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ABSTRACT 
        A finite element computer program has been developed to analyze slabs on elastic half space expansive as well as 
compressible soils.  Mindlin orthotropic plate theory is adopted for structural analysis of ribbed or constant thickness slabs.  The 
foundation soil is assumed to be an isotropic, homogeneous, and elastic half space.  The behavior of an elastic half space is 
calculated by dividing the surface of the elastic half space into rectangular regions.  These regions are represented by stiffness 
matrices and they are assembled onto the rectangular plate finite elements. 

The shape of the soil surface underneath the slab is described by the differential soil movement (y m) and edge moisture 
variation distance (em).  The mounded soil surface requires an iterative procedure in the computer program for this soil-structure 
interaction system.  The program calculates displacements, moments in x- and y-directions, twisting moments, and shear forces.  
The comparisons of the results with the Post Tensioning Institute’s (PTI) Design and Construction of Post-Tensioned Slabs-on-
Ground manual examples show that the PTI analysis is conservative for the center lift case, but is not conservative for the edge lift 
case. 
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CHAPTER I 
INTRODUCTION 
 
1.1 The Problem  

 The soil, which represents a great portion of the 
earth’s surface, is very complicated to deal with in regard to 
its engineering behavior.  The main problem is certainly the 
variety of its material properties which can make it elastic, 
plastic, nonhomogeneous, anisotropic, and compressible, 
expansive or collapsing.  It is necessary to understand the 
properties of the supporting soil and also to describe its 
behavior mathematically in order to design a foundation 
properly.  A geotechnical engineer dealing with the 
problematic soils is often faced with the need to calculate 
displacements of the foundation soil and to analyze the 
effects of the displacements on the slab. 

Foundation design on an expansive soil provides a 
major challenge to a geotechnical engineer because of the 
unique properties of these soils; shrink and swell.  Expansive 
soils swell when they absorb moisture from the environment 
and shrink when they lose moisture to the environment.  
Moisture movement in expansive soils is thus a major cause 
for volume change and this moisture movement is a result of 
unbalanced moisture energy (or soil suction) between the 
expansive soil and its environment. The moisture 
distribution does not occur uniformly within the soil 
underlying the foundation and thus results in differential soil 
movement.  It is this differential movement that results in 
major distresses in the slab foundations.  The climatic 
condition of a site is a major factor controlling the 
magnitude of the differential soil movement.  The climatic 
condition of a site will determine the active zone, the 
possible maximum seasonal changes of soil moisture 
condition and thus the wet and dry soil suction profiles (Fig. 
1.1). 

 

 
Fig. 1.1.  Typical Environmental Effects on a House Foundation. 

                                                 
1The style and format of this dissertation follows that of the 
Journal of Geotechnical Engineering, ASCE. 
  

 
 
 
 
 
 
 
 
 
 

These seasonal changes of soil moisture or soil suction 
will dictate differential soil movement.  Therefore, it is very 
important for a geotechnical engineer dealing with expansive 
soil to have knowledge of the soil suction distribution within 
the soil below a slab foundation. 

To determine the vertical soil deformation in excess of 
the soil’s expansion characteristics, the foundation soil needs 
be properly formulated.  There is a spectrum of foundation 
models ranging from Winkler’s type to the semi -infinite, 
homogeneous and isotropic, elastic continuum.  Perhaps the 
best representation for the most frequently occurring soil 
materials is the elastic half space, behavior of which is 
described by Boussinesq’s equation (Huang 1993). 

Slab foundations have been analyzed using different 
approaches such as approximate numerical solutions, finite 
difference methods, and finite element methods.  The finite 
element method incorporating the foundation soil has 
recently been widely accepted in analyzing the slab 
foundations because of its versatility and reliability over 
other methods. Two plate (or slab) theories are commonly 
used in finite element applications: Kirchoff plate theory and 
Hencky-Mindlin plate theory. 

 
1.2 Background 

Slab foundations on expansive soils have been used in 
residential homes and lightly loaded commercial buildings 
for many years.  Many of these slabs were constructed as a 
result of experience and observation rather than rational 
design based analysis (Wray 1978).  A significant number of 
these slabs were considered to be failures due to the design 
approaches that were dependent on engineering design 
principles.  In the late 1960s, the Building Research 
Advisory Board (BRAB) initiated a research study in order 
to regulate design of the increased number of residential and 
light commercial building constructed on expansive soils .  
BRAB established design criteria for residential slab 
foundations.  This study was completed in 1968 and 
currently known as the BRAB method.  The BRAB (1968) 
method is highly empirical and based entirely on experience 
gained from observing the performance of slab-on-ground 
foundations throughout the USA.  Four types of slab are 
selected which are intended to represent all combinations of 
soil and climatic conditions that are likely to occur.  The 
initial selection of slab type is carried out from a table 
relating it to soil type, according to the Unified Soil 
Classification System, the minimum density, plasticity 
index, unconfined compressive strength, and the climatic 
rating.  However, the influence of climate on the very 
complex effects of soil volume change is not adequately 
defined.  Moreover, the design involves dividing slabs of 
irregular shape into overlapping rectangles.  The total 
average dead and live loads are assumed to be uniformly 

Evapotranspiration

Precipitation

Dry Suction Profile

Wet Suction Profile

Equilibrium
 Suction Line

Moisture
Barrier
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distributed over the whole slab.  This procedure may 
simplify the calculations but it is unrealistic.   

The Post Tensioning Institute (PTI) initiated a research 
study at Texas A&M University for development of new 
guidelines for characterization of expansive soils under 
different climatic conditions and of new finite element 
structural analysis method for the design of slab foundations.  
The method published by the Post Tensioning Institute 
(1980) is based on research conducted by Wray (1978) and 
the updated version of the method was published in 1996 
and is the most recent attempt to improve the rationality of 
the previous design methods.  A slab resting on an elastic 
continuum is analyzed using a modified form of a finite 
element program developed by Huang (1974).  The selection 
of the elastic continuum foundation mo del over the most 
popular and widely used Winkler (or spring) type models 
makes the PTI method more realistic.   

The more rational improvement in the PTI method is 
perhaps in the characterization of expansive soils, while 
taking into account all possible climatic effects, to predict 
the volume change of the foundation soil.  
Recommendations are provided for estimating the edge 
moisture variation distance, em, as a function of the 
Thorntwaite moisture index, Im.  In addition, a more rational 
method has been adopted in the determination of vertical soil 
movement from the computer program VOLFLO based on 
moisture diffusion and volume change relationship.  The 
variables used in this analysis are the type of clay mineral, 
percent clay, depth to constant suction, the constant suction 
value, velocity of moisture flow, and the edge moisture 
variation distance.  

As a result of these research studies, there have been 
many improvements and developments in slab foundation 
designs, from empirical to more rational based on 
engineering principles.   
  
1.3 Objective of Study 

The most current design procedure for the slabs on 
expansive soils is the method by the Post Tensioning 
Institute (1996).  In the PTI design method, the analysis of 
the plate structure with the finite ele ment method has some 
shortcomings that are the objectives of this research.  For 
instance, only rectangular slabs can be analyzed with the PTI 
method.  For non-rectangular geometries, the rectangular 
slabs are overlapped to match the actual geometry.  The PTI  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

slab analysis is based on classical plate theory (Kirchhoff 
plate theory or thin plate theory), but an improved method 
should allow for thick plates if needed.  Stiffening beams in 
the PTI method are converted to an equivalent slab thickness 
for calculating the bending moment, shear, and deflection 
and the method allows for a uniform distributed load all over 
the slab as well as line loads along the perimeter.  However, 
an improved method needs to allow a slab cross-section that 
has stiffening beams and different magnitudes of distributed 
loads at different locations on the slab.   

Therefore, the research approach is to develop and 
conduct a finite element analysis of a slab resting on an 
expansive soil, which is modeled as an elastic half space, to 
predict the magnitudes of bending moment, shear, and 
deflection under applied design loads. 
 
1.4 Outline of Dissertation 
   Chapter II presents an extensive literature review on 
topics related to slabs on expansive soil foundations. In 
order to have a better understanding of the present status of 
knowledge in this field, the discussion in Chapter II 
summarizes the design methods that are extensively used in 
many parts of the world.  
       Chapter III covers the theoretical background of the soil 
suction concept, which is a very important parameter for 
unsaturated expansive soils.  The discussion also includes 
topics on soil suction measurement techniques.  Expansive 
soils are also briefly mentioned in this chapter. 
   Chapter IV summarizes the major foundation models in 
the literature.  The formulation of the elastic half-space 
foundation, which is adopted in this research, is presented in 
detail. 
   Chapter V is devoted to the presentation of the theory 
of the plates and the finite element method.  Both the 
Kirchhoff’s plate and Mindlin’s plate are discussed while 
only the latter is adopted for the finite element analysis in 
this research.  
   Chapter VI describes the finite element computer 
program developed in this thesis and Chapter VII explains 
the applications of the computer program with several 
examples. 
   Chapter VIII covers a brief summary of design tools 
for slabs on expansive soils while the study of this research 
is concluded in Chapter IX. 
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CHAPTER II 
BACKGROUND OF RIBBED SLABS 
ON EXPANSIVE SOILS  
 
2.1  Introduction  
      Investigations are continually being undertaken into the 
development of more rational analysis and design 
procedures for ribbed slab foundations on expansive soils.  
Since the problems associated with constructing structures 
on expansive soil were first recognized, numerous 
foundation and structural design methods have been 
proposed to prevent such damages.  A stiffened raft 
foundation may be a solution to those problems because of 
its relative ease of construction, economy, and satisfactory 
performance (Lytton and Woodburn 1973).  The stiffened 
raft usually consists of a slab about 10 to 15 cm (about 4 to 6 
inches) thick, with regularly spaced edge and cross stiffening 
beams.  These are designed to limit distortion of the 
superstructure to tolerable levels as the underlying soil 
undergoes differential movement.  The typical damages 
caused by swelling foundation soil are cracking in building 
walls, distorted slabs, and misaligned or broken buried 
utility pipes. 
   If a foundation is placed on an expansive soil, the 
geotechnical engineer faces a major challenge because the 
soil can respond with a change in volume 
(shrinking/swelling).  The expansive soil can respond not 
only to the structural loading but also to a change of soil 
moisture condition.  The unique property of expansive soil is 
the change in volume when it absorbs moisture from its 
environment (swelling) or loses moisture to its environment 
(shrinking).  Lightly loaded structures such as houses, 
apartments, and pavements have been affected by these 
reactive heaving soils (mainly smectite type clay) in all over 
the world (Fig. 2.1).   
 

 
Fig. 2.1.  Distribution of Expansive Soils in the World (after Wray 
1978).  
 
   To employ the slab analysis procedures, the 
geotechnical engineer needs to predict the differential soil 
movement caused by the expansive soils.  It is known that 
the climatic condition of a site is a major factor controlling  

 
 
 
the magnitude of the differential soil movement.  The 
climatic condition of a site will determine the active zone, 
the possible maximum seasonal changes of soil moisture 
condition (wet and dry soil suction profiles, Fig. 2.2).  Thus, 
it is of great importance for a geotechnical engineer dealing 
with expansive soil to have knowledge of soil suction 
distribution within the soil.  Once the soil suction profile is 
obtained, the soil volume change induced by these soil 
suction changes can be estimated. 
 

 
Fig. 2.2.  Suction Profiles. 
 
   When a lightly-loaded structure such as a slab-on-
ground foundation is constructed over expansive soils, the 
climate conditions at the site has a great influence on the 
type of distress that the foundation will undergo as a result 
of distortion of the support provided by the foundation soil.  
In general, there are two major types of expansive soil 
distortion modes (Lytton 1972): center-lift and edge-lift 
(Fig. 2.3).  The center-lift case usually occurs when the soil 
at the perimeter of foundation shrinks.  The edge-lift case 
usually occurs when the soil at the perimeter of foundation 
swells.  Either type of distortion will result in structural 
damages if the slab is not designed properly.  The distortion 
mechanism should be selected to produce the worst values of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.3.  Slab Distortion Modes. 
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design moment, shear force and deflection (Lytton 1972). 
 
2.1.1  Volume Change Behavior of Expansive Soils 
   The volume change behavior of expansive soils may 
not be predicted satisfactorily using traditional soil 
mechanics theories as  well as elastic or plastic theory due to 
the large magnitudes of volumetric strains involved (Lytton 
1996).  However, there are many methods that rely on these 
theories as well as on some laboratory methods such as 
consolidometer tests or even on moisture content 
determinations.  Lytton (1973) has shown that the volume 
change of expansive soils can be predicted satisfactorily 
with the use of soil suction, which has proven to be a stress 
state variable for unsaturated soils (Fredlund and Rahardjo 
1993).  This is a more rational approach since suction as a 
measure of the negative stress in the pore water, which pulls 
the soil particles together, is dependent on boundary 
conditions such as vegetation and climate.  Suction is a 
thermodynamic quantity which will retain all the effects of 
the climate, such as humidity and temperature, within itself 
and carry them as a stress effect on the soil particles.  Lytton 
(1973) has formulated his volume change theory using the 
soil suction principle and the influence of the overburden 
stress, soil fabric, and cracks within the soil mass. 
 
2.1.2 Structural Analysis of Slabs  
   The early structural analysis procedures to predict 
bending moments, shear forces, and deflections for the slab-
on-ground foundations are simple for the design purposes, 
but are not based on the actual mechanics of soil-structure 
interaction principles.  In such cases, for example, one-
dimensional analysis is adopted and this analysis is carried 
out in both directions to represent a two-dimensional case.  
Moreover, for the arbitrary shape slabs, the analysis involves 
dividing slabs into overlapping rectangles.  The dead and 
live loads are assumed to be uniformly distributed over the 
whole slab.  These analysis procedures may simplify the 
calculations, but they are not realistic.  Later, Lytton (1970) 
introduced the elastic mathematical models of beams and 
slabs, which are based on the principles of mechanics, to 
improve the rationality of the analysis procedures.  The 
effect of representing the two-dimensional problem as a one-
dimensional beam-on-ground is also investigated by Lytton 
(1970), using the finite difference method to solve the two-
dimensional plate equation on coupled spring foundation.  
With the development of high speed computers, the analysis 
procedures for two and three dimensional complex problems 
using the finite element method has become a common 
practice.  Wray (1978) analyzed a slab resting on an elastic 
half-space foundation using the finite element method, 
which is the most rational analysis proposed to date.  The 
finite element method seems to be a promising structural 
analysis method because of its versatility of applying it to 
many complex structures. 
 
2.2 Existing Design Methods  
   There are more than ten design procedures for the slab-
on-ground foundations (Wray 1978).  However, among the 
existing methods the ones by Building Research Advisory 
Board (1958, 1963, 1968), Lytton (1970, 1971, 1972, 1973), 
Walsh (1974, 1978), Frazer and Wardle (1975), and Post 

Tensioning Institute (1996) have been mentioned in the 
literature quite often.  These methods have reasonably 
rational bases, but all have some shortcomings both in their 
theory and in their degree of simplification.  Consequently, it 
has been necessary to mention these methods briefly, to 
evaluate the validity of the basic assumptions and the design 
variables.  
 
2.2.1 The Building Research Advisory Board (BRAB) 
Method 
   The BRAB (1968) method is highly empirical and 
based entirely on experience gained from observing the 
performance of slabs-on-ground throughout the USA (Wray 
1978).  Four types of slab are selected which are intended to 
represent all combinations of soil and climatic conditions 
that are likely to occur (PTI 1996).  The slab types are: 
   TYPE I:  Unreinforced 
   TYPE II: Lightly reinforced against shrinkage and 
temperature cracking 
   TYPE III: Reinforced and stiffened 
   TYPE IV: Structural (not directly supported on the 
ground) 
   The initial selection of slab type is carried out by 
relating it to soil type, according to the Unified Soil 
Classification System, the minimum density, plasticity index 
or the unconfined compressive strength, and the climatic 
factor.  BRAB produces a map (Fig. 2. 4) showing the 
distribution of the climatic rating, Cw, for the USA, but there 
is not enough information how it is being estimated. 
 

 
Type I and Type II slabs are usually constructed on 

stable soils and Type III is recommended for use on 
expansive soils.  The Type IV is used as a suspended floor 
slab in the areas where the soil bearing capacity is not 
sufficient.  The Type III slab has several assumptions; the 
design loads of the structure are uniformly distributed over 
the slab area and the support index, C, which is dependent 
upon the climatic rating ,Cw, and the soil plasticity index ,PI, 
is a constant for all slab sizes (Fig. 2.5).  The support index 
is a measure of the proportion of the slab that is being 
supported by the foundation soil. 
   The Type III slab design involves dividing slabs of 
irregular shape into overlapping rectangles with long and 
short sides of length L and L′, respectively.  Among several 
support conditions the ones similar to the models shown in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.4.  Climatic rating, Cw, for the USA (from Wray 1978). 
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Fig. 2.3 are adopted permitting a one-dimensional analysis 
which is carried out in both directions, L and L′, to represent 
the two-dimensional case.  The design values for maximum 
moment, M max, shear, Vmax, and deflection, Wmax, by 
applying the above mentioned simplifications and 
assumptions, are given by 
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where: 
q  =  uniformly distributed load, 
E  =  elastic modulus of concrete, 
I  =  second moment of inertia of section, 
C   =  support index, 
L  =  slab length, and 
L’ =  slab width. 

 
   The relationships given in Fig. 2.5, for determining the 
support index which is an important parameter in Eq. 2.1, 
are empirical and they cannot be used for other climatic 
conditions.  The value of C is independent of the slab length.  
This assumption is not in accordance with observed 
measurements (Wray 1978).  
 
2.2.2 Lytton’s Method 
   Lytton (1970) improved the rationality of the BRAB 
procedure by abandoning the concept of an empirical 
support index and proposing elastic mathematical models of 
beam and slab on a curved mound.  Lytton formulated the 
foundation soil for center lift (Fig. 2.3) analysis using the 
Winkler model and for edge lift analysis using the coupled 
spring model.  The design quantities are then calculated 
directly once the relevant properties influencing the soil-
structure interaction have been established.  Lytton modified 
the general beam equation by including the effects of 
shearing resistance, which was represented by the coupled 
springs, of the foundation soil.  The differential equation, 
which was put forward to represent a beam on a coupled 
spring mound, is given by 
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where: 
EI  =  beam flexural stiffness, 
w   =  transverse deflection of the beam, 

y   =  position of mound, 
G  =  effective soil shear modulus, 
h   =  effective depth within which soil shearing 
resistance is mobilized, 
B   =  effective width within which soil support for the 
beam is mobilized,  
k   =  effective subgrade modulus, and 
q   =  distributed load on the beam. 
   A second equation for the case of an isotropic elastic 
plate, which includes the effects of the soil shearing 
resistance, on the same foundation type is given by 
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where: 
D =  flexural rigidity of the plate, 
p  =  distributed load on the plate, 
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operators. 
   The shape of the curved mound was chosen to fit 
experimentally determined or observed field shapes and was 
given in the form 
 
y = βxm                                                                              (2.4) 
 
where: 
m =  the mound  exponent, 
β  =  a constant, 
x  =  distance along the beam, and 
y  =  distance below the highest point of the mound. 
   Lytton proposes that the beam equation can be applied 
to a slab when the slab is assumed to take a cylindrical 
deflection pattern, however, it is also pointed out that if two 
dimensional bending becomes the primary mode of 
distortion, then the assumption of the cylindrical deflection 
pattern is not valid.  This differential equation applies only 
in the region where the beam is in contact with the soil, and 
a second equation, in which kB and GhB are put equal to 
zero, applies from the points not in contact with the soil.  An 
iterative process is required to locate these points.  A rigid 
beam solution was also developed to determine maximum 
moment and shear envelopes.  The main benefit gained from 
these studies is an appreciation of the relative importance of 
the different design variables and the rational mathematical 
models of soil-structure interaction.   
   Lytton (1972) proposed to use line loads around the 
perimeter and along the centerline of the slab and a 
uniformly distributed dead and live load over the whole slab.  
The maximum moment is then calculated in each direction, 
assuming both the soil and slab to be rigid, and then reduced 
by a correction term to account for soil compressibility.  In 
the case of center lift, the equation for the one-dimensional 
design moment, M1 in the direction L is given by 
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where: 
qe   =  line load acting on the perimeter, 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.5.  Support Index, C (from Wray 1978). 
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qc   =  line load acting through the center of the building, 
ql   =  uniformly distributed load from dead and live 
loads, 
T   =  total load on the rectangle,  
c   =  support index, 
and for the edge lift case 
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   In the case where the one-dimensional design moment 
obtained from Eqs. 2.5 and 2.6 are adjusted for the two-
dimensional plate behavior for the long direction 
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and for the short direction 
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   The design values for the shear force and deflection are 
estimated from 
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where V is the shear force and w is the deflection. 
   The support index presented by BRAB depends on 
experience and empirical consideration of observed site 
conditions, however Lytton proposes a support index, c, by 
using the rational analysis of the interaction between the 
expected swelling profile and the slab.  The support index 
can be obtained from 
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where: 
m  =  mound exponent, 
A   =  slab area,  
T   =  total load acting on the slab, 
ym  =  maximum d ifferential heave, and 
k   =  Winkler subgrade modulus. 
   The support index can also be estimated from the 
nomograph (Lytton 1972) which is given in Fig. 2.6 below.  
More precise methods of determining the differential soil 
movement, ym, based on the thermodynamics of soil 
moisture and the volume strain theory for swelling soils 
were developed by Lytton (1973) and they will be presented 
in detail in coming sections. 
 
2.2.3 Walsh’s Method 
   Walsh (1974) proposed a design method which is 
essentially a combination of the BRAB (1968) and Lytton 
(1970) approaches, Walsh’s main contribution being an 
attempt to rationalize the determination of the support index.  

As in the case of BRAB, simplified design recommendations 
were given; four slab types were defined, and their selection 
was based on soil type and expected differential soil 
movement.  The Type III slab was recommended for use in 
areas where problems could be anticipated because of the 
presence of expansive soils. 
   Again the foundation is separated into overlapping 
rectangles and each rectangle is analyzed in both directions 
assuming the simplified two-dimensional center and edge 
heave patterns.  Walsh (1974) also assumes the dead and live 
loading to be uniformly distributed over the whole slab area, 
but uses the beam on mound equation (Eq. 2.2) proposed by 
Lytton (1970) to determine the support index. 
 

 
   The slab is assumed to be flexible and interacts with 
the mound as shown in Fig. 2.7.  Walsh adopts the same type 
of spring foundation model and differential equations 
proposed by Lytton (1970).  The design values of moment, 
shear, and stiffness can then be determined from equations 
identical to those proposed by BRAB (Eq. 2.1).   
   Walsh (1978) has attempted to modify his earlier 
method by introducing a procedure for the determination of 
the stiffness constant, k.  The mound is assumed to be 
consisting of a soft mound with stiffness, kS, underlain by a 
hard mound with stiffness, kH.  A laboratory or field 
procedure is outlined to obtain swell-pressure curves from 
which kS can be determined.  The beam on mound equation 
was modified to 
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where: 
AH, AS   =  the RkSb2 for the hard and soft mound, 
respectively, 
BH, BS   =  the RkS for the hard and soft mound, 
respectively, 
b     =  the  cooperating width which determines the 
extent of the coupling effect, 
R     =  the width of the foundation affected by the 
beam, and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.6.  Nomograph for Support Index, c (from Lytton 1972). 
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yH
o, yS

o =  the initial mound shape for the hard and soft 
mounds, respectively. 
   In the solution of this equation the hard mound was 
assumed to heave one-eighth, and have a stiffness 30 times 
that of the soft mound. 
 
2.2.4 Fraser and Wardle Method 
   A three-dimensional semi -infinite elastic soil 
foundation has been introduced by Fraser and Wardle (1975) 
instead of the Winkler and coupled spring foundation 
models proposed by Lytton (1970) and Walsh (1974).  This 
is a more rational approach than the previous Winkler and 
coupled spring models.  Fraser and Wardle used an existing 
finite element program (FOCALS) to analyze a plate 
structure on the three-dimensional elastic solid foundation 
model.  However, they did not produce a general design 
procedure for the slab-on-ground foundations built on 
expansive soils. 
 

 
2.2.5 The Post Tensioning Institute (PTI) Method 
   The method published by the Post Tensioning Institute 
is based on research conducted by Wray (1978).  PTI 
published the first edition of “Design and Construction of 
Post-Tensioned Slabs-on-Ground” in 1980 and the second 
edition was published in 1996 after some revisions.  The PTI 
method is the most recent attempt to improve the rationality 
of the previous design methods.  The two-dimensional slab 
resting on an elastic continuum was analyzed, using a 
modified form of a finite element program developed by 
Huang (1974).  The material properties which are used in the 
program are Poisson’s ratio and Young’s modulus for soil 
and concrete.  The input variables were selected as: 
differential soil movement, edge moisture variation distance 
(Fig. 2.3), stiffening beam depth, beam spacing, perimeter 
loading, and slab length.  The dead weight of the slab was 
calculated automatically within the program.  The influence 
of each of the variables on the design values of moment, 
shear, and deflection was examined and the computer output 
analyzed to develop equations for a general design 
procedure. 
   Recommendations are provided for estimating the edge 
moisture variation distance, em, as a function of the 
Thorntwaite moisture index, Im (Fig.2.8).  The Thornthwaite 
index is an indicator of change in moisture in the soil 
through evapotranspiration or rainfall.  A positive 
Thornthwaite index represents a net surplus of soil moisture 
while a negative index indicates a net moisture deficit.  The 
Thornthwaite moisture index distribution for the United 

States is given in Fig. 2.9 below.  This moisture index can be 
applied to any geographical location throughout the world.  
   In addition, a more rational method has been adopted 
in the determination of differential swelling soil profile, ym, 
which is based on moisture diffusion/volume change 
relationship.  This procedure has been put forward as a 
computer program known as VOLFLO, which will be 
described in the next section, and is being used along with 
the current PTI slab program.  The variables used in this 
analysis are the type of clay mineral, percent clay, depth to 
constant suction, the constant suction value, velocity of 
moisture flow and the edge moisture variation distance. 
   Recommendations are also given for obtaining the 
values of these variables, for instance, the equilibrium 
suction value is obtained from the curve given by Russam 
and Coleman (1961), which relates the constant suction 
value under a covered area to the Thornthwaite moisture 
index (Fig. 2.10). 

 

 
2.3 Design Parameters ym and em 
   Design parameters ym and em are two important values 
that describe the design mound shapes for edge and center 
lift conditions.  These parameters depend on the soil type, 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.7.  Soil-Structure Interaction Proposed by Walsh (1974). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.9.  Distribution of the Thornthwaite Index in the US (from 
Wray 1978). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.8.Moisture Variation Distance versus Thornthwaite Index 
(after PTI 1996). 
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soil moisture diffusion characteristics, and climatic 
conditions. 
 
2.3.1 The VOLFLO Program 
   VOLFLO is a computer program which performs 
volume change and flow calculations for expansive soils.  It 
was developed in the early 1980’s at Texas A&M University 
under the guidance of Prof. Dr. Robert L. Lytton.  VOLFLO 
calculates the soil shrinkage and swelling using soil suction 
concept.  Only the effect of horizontal moisture flow is 
considered and the effect of vertical moisture movement is 
neglected.  The program calculates volume change and 
moisture movement rates in expansive soils for five different 
sets of effects occurring near a foundation system: 
1. General case—no effects 
2. A vertical barrier to moisture flow at the edge of the 

foundation 
3. A horizontal barrier to moisture flow at the edge of the 

foundation 
4. A tree or flowerbed near the edge of the foundation.  

Tree roots may or may not extend beneath the 
foundation 

5. Both trees and horizontal barrier.  This case is a 
combination of cases 3 and 4. 
The volume change can be calculated for an expansive 

soil with a depth to constant suction down to 20 feet.  The 
soil may be composed of up to 6 layers within the active 
zone. 

 
2.3.1.1 Theory of Volume Change and Horizontal 
Moisture Flow as in VOLFLO 
   Darcy’s law relates the moisture flow in fully saturated 
soils to a hydraulic gradient through a constant saturated 
permeability and can be stated as 
 

ikv o ⋅=                                                                          (2.12) 
 
where: 
v   =  velocity of water flow, 
ko  =  saturated permeability, and 
i   =  hydraulic gradient. 
   Darcy’s equation can be employed for unsaturated soils 
by assuming that the hydraulic gradient can be represented 
by a change in suction along two distinct points.  For a 

horizontal moisture flow the equation can be written as 
(Lytton 1977) 
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where: 
∆h  =  horizontal change in suction, 
∆x  =  change in horizontal location, 
vx  =  horizontal velocity of moisture flow, and 
k   =  unsaturated permeability. 
   For the vertical moisture flow, the total gradient or 
head consists of the suction head plus elevation head, and 
therefore Darcy’s law for the vertical flow, from which the 
equilibrium suction profile corresponding to a zero vertical 
moisture velocity is determined, can be written as 
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where: 
vz  =  vertical velocity of moisture flow, 
∆z =  change in vertical location. 
   Lytton (1977) used the Gardner’s equation, which 
relates the permeability to suction through some constant 
soil coefficients, to estimate the differential soil swelling 
within the active zone using the soil suction envelope values.  
The general form of the equation is as follows 
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where: 
k    =  unsaturated permeability, 
ht    =  total suction, and 
a, n  =  dimensionless soil property constants. 
   The change in suction in the vertical direction in an 
unsaturated soil profile can be estimated if Eq. 2.15 is 
plugged into Eq. 2.14 as 
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   Values for the soil property constants a and n, and the 
in-situ saturated permeability values for the typical 
expansive soils are given in Table 2.1. 
 
Table 2.1 Typical Field Values of Permeability for 
Expansive Clay Soils (Lytton 1977). 

Soil a n ko (cm/s) 
Yazoo … 1.0 4.5×10-7 
Lackland … … 2.7×10-6 
Horsham … … 2.0×10-6 
West Laramie 
clay shale 

10-9 3.0 4.5×10-6 

Flagstaff Gully 
Dam 

… … 2.0×10-6 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.10.  Thornthwaite Index versus Constant Suction (from PTI 
1996). 
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   In the VOLFLO program, for the average expansive 
soil coefficients as selected from Table 2.1, the modified 
Gardner’s equation (Eq. 2.15) takes the form 
 

39

6

101

102

th
k

−

−

+

×=                                                             (2.17) 

 
   Velocity of the horizontal moisture flow for the cases 
1, 2, and 3, which are mentioned in the previous section, is 
estimated from the relationship 
 

n

cs

cs
o h

zh
vv 







 −
=                                                             (2.18) 

 
 where the variables are depicted in Fig. 2.11 below. 

 
   The volume change of expansive soils results from the 
applied pressure and from changes in suction.  A conceptual 
drawing of pressure and suction versus volume change is 
shown in Fig. 2.12.  For instance, the simultaneous decrease 
in suction and increase in pressure result in a small change 
of volume, as given by the path from point A to point C in 
Fig. 2.12.  The suction decreases from point A′ to point B′ 
while the pressure increases form point B′ to point C′.  The 
volume change process can be viewed as the net result of 
two processes (Lytton 1994); at constant mechanical 
pressure or total stress the volume increases along the path 
from A to B and at constant suction the volume decreases 
along the path from point B to point C. 
   For small increments of volume change on the surface 
described by Fig. 2.12, the volume strain is linearly related 
to the logarithms of both pressure and absolute value of 
suction (Lytton 1994).  The general relation between the 
volumetric strain and the pressure, matric and osmotic 
suction for a swelling soil is given by 
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and for a shrinking soil is given by 
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where: 
hi, hf   =  initial and final matric suction, 
σi, σf   =  initial and final values of mean principal stress, 
πi, πf   =  initial and final osmotic suction, 
γh   =  volume change coefficient due to shrinking or 
swelling, 
γσ   =  volume change coefficient due to overburden, 
γπ   =  volume change coefficient due to osmotic effects, 
and 
∆V/V  =  percent volume change in decimal form. 
 

 
   The overburden correction coefficient, or the initial 
mean principal stress, is defined as the pressure at the depth 
above which no volume change correction is made and can 
be represented as 
 

( )tcoi h γσ =                                                                    (2.21)                                                 
 
where: 
hco  =  depth above which no volume change correction is 
applied, 
γt   =  unit weight of soil. 
   Similarly, the mean pressure at a depth z can be 
calculated from the following relationship 
 

( )( )321 otf kz += γσ                                                    (2.22)                                          

 
where ko is the lateral earth pressure coefficient.  Due to 
cycling swelling and shrinking of expansive soils, the lateral 
earth pressure coefficient may vary practically from zero 
(especially when the soil shrinks) to the passive earth 
pressure levels (especially when the soil swells).  Typical 
values that have been back-calculated from field 
observations of swelling and shrinking soils are as follows 
(Lytton 1994): 
      ko  =  0.00 when the soil is badly cracked, 
      ko  =  0.33 when the soil is drying, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.11.  Velocity Distribution Factor (after Lytton 1977). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.12.  Volume Change with Pressure and Suction for Soils 
(after Lytton 1994). 
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      ko  =  0.67 when the soil is wetting up, and 
      ko  =  1.00 when the cracks are closed and the 
soil is swelling.  
   The volume change coefficient due to shrinkage and 
swelling has the following relationship in terms of the 
percent fine clay content of the foundation soil 
 
γh = [% fine clay (in decimal)] × γ100                              (2.23) 
 
where γ100 is the volume change guide number for different 
types of active clays, which is given in the parenthesis in 
Fig. 2.13, which was developed by McKeen (1981) using the 
pressure plate apparatus and the compressibility—volume 
change relationship as given by the slope of Fig. 2.12 as 
 

h
h

V
V

h ∆

∆

−=γ                                                                     (2.24) 

 
   The percent fine clay represents the percent of the 
portion of the soil which passes the No. 200 sieve which is 
finer than 2 micron size, in other words 
 







−
−

=
sieve 200 .No%

micron 2%
clay fine %                                  (2.25) 

 
   The activity ratio, Ac, and the Cation Exchange 
Activity ratio, CEAc, as given in Fig. 2.13 above, are used to 
estimate the suction compression index, γh, and they are 
defined as 
 

( )
( )

( )
( ) 100
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micron 2%

100
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micron 2%
% 

×
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−
=

×
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−
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CEC
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                                (2.26) 

 
where: 
PI   =  plasticity index, 

CEC  =  Cation Exchange Capacity in milliequivalents per 
100 gms of dry soil. 
   The Cation Exchange Capacity, CEC, can be calculated 
in a number of ways, one of the practical methods, which 
was developed by Mojeckwu (1979), is to correlate it to the 
plasticity limit, PL, or the liquid limit, LL, value of the soil 
as 
 

( )

( ) 912.0

17.1
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≅

≅

                                            (2.27) 

 
   Similar to the derivation of the volume change 
coefficient for the matric suction, the coefficients for the 
mean principal stress and osmotic suction changes can be 
calculated using Fig. 2.12 and Eq. 2.19 (Lytton 1994) 
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and                                   (2.28) 

 
   The compression index for the mean principal stress is 
also related to the commonly used swelling compression 
index, Cs by 
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s

e
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1σγ                                                                     (2.29) 

 
where eo is the void ratio and Cs is given by the slope 
depicted in Fig. 2.14. 
 

 
   The compression index, γσ, is also related to γh by the 
following equation (Lytton 1994) 
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Fig. 2.13.  Volume Change Guide Numbers (after McKeen 1981). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.14.  A Typical e-logP Curve. 
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where: 
θ     =  volumetric water content, 
h     =  suction, and 
∂h/∂θ  =  slope of the suction versus volumetric water 
content as shown in Fig. 2.15. 
 
 

 
   The part of Eq. 2.30, which is on the right side of γh, is 
less than 1, so the index γσ can be taken equal to γh for all 
practical reasons.  Then, the vertical volu me change at depth 
z below the edge of the foundation is calculated as 
 


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 ∆
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V
V

f
H
H

                                                               (2.31) 

 
where f is a crack fabric factor.  The back-calculated values 
for f are 0.5 when the soil is shrinking and 0.8 when the soil 
is swelling.  Therefore, the total heave or shrinkage at depth 
z is  
 

( )z
H
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
 ∆

=                                                        (2.32) 

 
where ∆z is the vertical increment. 
 
2.3.1.2 Naiser’s Study of Predicting Vertical Soil 
Movement 
   Naiser (1997) improved the current method (i.e., 
basically the VOLFLO method) of predicting the differential 
movements for expansive soils. Naiser presents the 
procedures to calculate suction profiles and to predict soil 
swelling and shrinking beneath foundations which generate 
maximum slab distortion modes.  The suction profiles are 
developed using the variables such as depth, time, local 
surface annual weather and vegetation conditions, the 
suction compression index, unsaturated permeability, and 
unsaturated soil diffusivity. 
   The main contributions of this research are: equations 
and procedures to calculate the equilibrium suction profile 
and depth to constant suction for a particular soil profile and 
location, equations to calculate the horizontal velocity flow 
of water in unsaturated soils, the methodology to predict 
differential soil movement shortly after a slab has been 

constructed and before the soil under the slab has reached an 
equilibrium moisture content, and procedures to apply 
differential soil movement theory to soil profiles with 
multiple layers and moisture effects cases to be used for 
slab-on-ground design. 
   The current version of VOLFLO, which is used along 
with the PTI slab program, is based on the principles 
described in the previous section and Naiser (1997) has 
expanded the parameters involved in the current VOLFLO 
procedure in predicting the volume changes of expansive 
soils by incorprating the work done by Mitchell (1980) and 
Gay (1994).  Mitchell (1980) developed and applied simple 
mathematical methods for predicting soil suction profiles.  
Gay (1994) developed a finite element program (FLODEF) 
for the transient moisture flow in unsaturated soils and a 
procedure to estimate the mean volumetric water content for 
soils dependent upon the location and climatic conditions. 
   The procedures mentioned above are applied to several 
moisture effect cases that are common with light commercial 
and residential structures such as bare soils at the surface, 
grass at the surface, trees at the surface, and a flowerbed at 
the surface.  Additionally, these procedures include 
calculating the effects of differential soil movement caused 
by the introduction of design effects such as vertical and 
horizontal moisture barriers. 
 
2.3.1.3 Mitchell’s Method of Predicting Suction 
Distribution in a Soil Profile 
   From the concept that the volume change of an 
expansive soil is a function of the rate of moisture diffusion, 
which is due to a suction change gradient, through the soil 
and as well as the soil type, Mitchell (1980) developed a 
diffusion equation that governs the soil suction distribution 
in time and location.  The general form of the moisture 
diffusion equation, which is used to predict the expansive 
soil movement fro m a known source of moisture or suction 
change, is as follows 
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                         (2.33) 

 
where: 
u     =  soil suction, 
x,y,z    =  cartesian coordinates, 
f(x,y,z,t) =  moisture inflow rate per unit volume, 
t     =  time, 
p     =  unsaturated permeability, and 
α     =  soil moisture diffusivity. 
   If the soil moisture diffusivity is assumed as a constant 
over a small range of soil suction change, the unsaturated 
permeability can be related the soil moisture diffusivity as 
follows 
 

w

d

S
p

γ
αγ=                                                                        (2.34) 

  
where: 
S   =  absolute value of the slope of the suction versus 
gravimetric water content curve, 
γd  =  dry unit weight of the soil, and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.15.  A Typical Soil-Water Characteristic Curve. 
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γw  =  unit weight of water. 
   Mitchell’s unsaturated permeability, p, is also related to 
the saturated permeability, ko, as given below 
 

4343.0
oo hk

p =                                                                     (2.35) 

 
where ho is a constant suction value of approximately –100 
cm for clays.  From Eqs. 2.34 and 2.35, the soil moisture 
diffusivity, α, can be determined easily from three soil 
properties; unsaturated permeability, dry unit weight, and the 
slope of suction versus gravimetric water content, which can 
also easily be established from several soil samples at 
different suction levels thus different water content levels 
(Fig.2.16). 

 
   The Mitchell’s diffusion coefficient can also be 
estimated from the suction compression, γh, characteristics of 
the soil and using the slope of the suction versus water 
content curve, S, which is a negative value, (Lytton 1994) as 
 

( ) ( )hS γα 0122.0000162.00029.0 −−=                          (2.36) 
 
and the value of S from 
 

( ) ( ) ( )200#%0684.0% 117.0% 1555.029.20 −+−+−= PILLS    (2.37) 

 
where: 
LL    =  liquid limit in percent, 
PI    =  plasticity index in percent, and 
-#200  =  percent of the soil passing the #200 sieve. 
   Mitchell also introduces two test methods that can be 
employed to estimate the diffusion coefficient; the Soaking 
Test and the Evaporation Test.  Both of the test methods are 
described in detail by Mitchell (1980).  Once the diffusion 
coefficient of the soil has been measured, the diffusion 
equation can be solved to obtain the suction distribution 
within a soil profile by applying the appropriate boundary 
conditions of the problem.  After the suction distribution is 
obtained, the soil movements induced by these suction 
changes can be calculated form the volume strain equation. 
   The suction profiles for time dependent moisture 
variations in an expansive soil profile can be estimated by 
solving the diffusion equation (Eq. 2.33) in the z-direction, 

and assuming that the solution is a periodic function of 
cosine and sine functions, as (Mitchell 1980) 
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where: 
h(z,t)  =  suction as a function of depth and time, 
hc    =  equilibrium suction value expressed in pF, 
ho   =  amplitude of suction change at the surface, 
α    =  soil diffusion coefficient using Mitchell’s 
unsaturated permeability, 
n    =  number of suction cycles per second, and 
t    =  time in seconds. 
   To calculate the maximum and minimum suction 
profiles, Naiser (1997) sets the cosine term in Eq. 2.38 to 1 
and arrives at 
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oc ehhtzh ,                                                 (2.39) 
 
   Equation 2.39 indicates that the limiting suctions 
decrease exponentially with depth as a function of the 
coefficient of diffusion, and therefore the depth to constant 
suction, zm, can be obtained by solving Eq. 2.39 for z as 
follows 
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   Values of hc and ho for clay soils with different levels 
of Mitchell’s unsaturated permeability have been calculated 
using a trial and error procedure (Lytton 1994).  Table 2.2 
gives the hc and ho values that change with the soil type and 
Thorntwaite Moisture Index, TMI, for the wet suction 
profile.  Values of n are taken as 1 cycle per year for all TMI 
less than –30.0 and 2 cycles per year for all TMI greater than 
–30.0.  The dry suction profile has a hc value of 4.5 pF and 
ho value of 0.0 pF.  Table 2.3 gives the equilibrium suction 
values, which are dependent on the Mitchell unsaturated 
permeability and the Thornthwaite Moisture Index, that can 
be used to estimate suction profiles. 
   For unsaturated soils, it is known that the permeability 
is not a constant, but is a variable dependent on total suction.  
Laliberte and Corey (1967) relates the unsaturated 
permeability, k, to the total suction, h t, as follows 
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=                                                                   (2.41) 

 
where n is a positive constant and is close to 1 for clays and 
4 for sands.  If this equation, for an n value of 1, is 
substituted for the unsaturated permeability in Eq. 2.14, the 
following equation, which can be employed to the estimate 
changes in suction in a vertical soil profile, can be obtained 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.16.  A Typical Suction versus Gravimetric Water Content 
Curve. 
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where ho is a constant suction value of approximately –100 
cm for clays.  This equation takes into account, to some 
degree, the increased permeability of the soil due to the 
cracks that are open at high suction levels as compared to the 
values calculated using Eq. 2.16 (Lytton 1994). 
 
Table 2.2.  Values for the Wet Suction Profile (after Lytton 
1994). 

Thornthwaite 
Moisture 

Index 

Mitchell 
unsaturated 
permeability 

(cm2/s) 

hc 
(pF) 

ho 
(pF) 

-46.4 5×10-5 
1×10-3 

4.43 
4.27 

0.25 
0.09 

-11.3 5×10-5 
1×10-3 

3.84 
2.83 

1.84 
0.83 

26.8 5×10-5 
1×10-3 

3.47 
2.79 

1.47 
0.79 

 
Table 2.3.  Equilibrium Suction Values (after Lytton 1994). 

Thornthwaite 
Mitchell Unsaturated Permeability 

(cm2/s) 
Moisture 

Index 1×10-3 2.5×10-4 5×10-5 
-46.5 4.27 4.32 4.43 
-30.0 3.80 3.95 4.29 
-21.3 3.42 3.64 4.20 
-11.3 2.83 3.10 3.84 
26.8 2.79 3.05 3.47 

 
2.3.2 Edge Moisture Variation Distance 
   Differential expansive soil movement, which is a very 
important parameter in designing the slab foundations, may 
take different distortion shapes, but the most important 
shapes for the design purposes are the ones that generate the 
maximum values of moment, shear, and deflection.  The two 
critical distortion modes that are used in the slab-on-
expansive soil foundation designs are the edge lift and center 
lift conditions as depicted in Fig. 2.3.  The edges of the slab 
will move up or down in response to the seasonal moisture 
changes.  The distance within which these changes takes 
place is called the edge moisture variation distance (Lytton 
1977).  In other words, the edge moisture variation distance 
is considered to be the distance between the edge of the slab 
foundation and the point beneath the slab where the suction 
change is at tolerable value (usually less than 0.2 pF).  An 
empirical relation between the edge moisture variation 
distance and the Thornthwaite Moisture Index (Fig. 2.8) has 
been used in the PTI design method.  It is also known that 
the edge moisture variation distance depends on the 
permeability of the soil (Lytton 1994) and therefore can be 
obtained by this relation. 
   Gay (1994) developed a finite element program (named 
as FLODEF) for the transient moisture flow in unsaturated 
soils, which uses the unsaturated soil properties such as the 
soil moisture diffusion and unsaturated permeability.  This 
program has been used extensively by Jayatilaka et al. 

(1992) in the study of vertical moisture barriers.  Lytton 
(1994) used the results of the program to correlate the edge 
moisture variation distance with the unsaturated soil 
properties.  Edge lift conditions were simulated by a one 
year wet spell following a dry suction profile condition.  
Center lift conditions were simulated by a one year dry spell 
following a wet suction profile condition.  The dry and wet 
conditions used annual suction variation patterns that were 
appropriate for each of nine different climatic zones ranging 
from a TMI of –46.5 to +26.8, a typical range for Texas.  
The resulting edge moisture variation distances for the 
center lift cases are depicted in Fig. 2.17. 

 
   Seven different soils were used to calculate the 
relationship between the edge moisture variation distances 
and TMI.  For the center lift condition (Fig.17), the Soils No. 
1, 2, and 3 were selected as pervious and Soils No. 5, 6, and 
7 were chosen as practically impervious.  Only soils with the 
properties No. 3 and 4 have edge moisture variation 
distances in the range used in the current PTI manual 
(Lytton 1994). 
   The edge moisture variation distances for the edge lift 
condition are given in Fig. 2.18.  Similar to the center lift 
case soil types, the Soils No. 5, 6, and 7 are chosen as  
practically impervious while Soils No. 2, 3, and 4 have edge 
moisture variation distances in the range used in the current 
PTI manual, and the Soil No. 1 is more pervious and is 
outside the range.  The edge moisture variation distances of 
soils with different unsaturated permeabilities different than 
these seven soil types can be found by interpolation on these 
two figures. 
   Simple laboratory tests can be used to determine 
important properties of expansive soils such as the 
unsaturated soil permeability and diffusivity, and in return 
these parameters can be employed to predict a very 
important parameter, the edge moisture variation distance, 
for the analysis and design of slab foundations.  Lytton 
(1997) developed a method to determine the edge moisture 
variation distance for a particular design return period.  In 
developing the method, Lytton makes use of the design 
return periods that that were used to obtain the edge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.17.  Edge Moisture Variation Distances for Center Lift 
Case (after Lytton 1994). 
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moisture variation distances as given in Figs. 2.8, 2.17, and 
2.18.  The design return period used for Fig. 2.8 is 10 years 
while for Figs. 2.17 and 2.18 is 50 years.  The design periods 
are usually within these ranges of 10 to 50 years, typically 
being 20 years with 5% risk (Naiser 1997). 
   The resulting equation for the edge moisture variation 

distance is as follows  
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where 

5010r mmm eee  and , ,  are the edge moisture variation 

distances for the return period of r, 10, and 50 years, 
respectively.  The use of the Gumbel probability density 
function, which is commonly used to represent the 
probability of weather events, may be used to establish the 
risk level that is desired for design service life of the 
structure.  The zr, z10, and z50 values used in Eq. 2.43 are 
computed from the Gumbel cumulative probability 
distribution curve as follows 
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where both ρ and β are shape factors and can be assumed as 
one, and r is the desired return period. 
   Gay (1994) did extensive work in the area of 
calculating the mean volumetric moisture content for a given 
soil mass dependent upon the soil’s depth of available 
moisture, dam, and the location’s potential evapotranspiration 
(i.e., the Thornthwaite Moisture Index).  The depth of 
available moisture, dam, is defined as the maximum depth of 
moisture available for use by transpiring vegetation, which is 
stored within the soil zone down to the depth to constant 
suction.  Gay developed a set of functional relationships that 
are used to calculate the mean volumetric moisture content, 
which are then used to calculate the equilibrium suction 
value for a particular soil profile and location. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.4 This Study 
   The analysis method developed in this study is aimed 
at improving the rationality of the soil structure interaction 
models proposed by the earlier researchers.  An upper bound 
solution is obtained by assuming the worst initial mound 
shape, which is simply defined by two parameters em and ym.  
The soil is modeled as an elastic half-space.  This is more 
rational than the previous Winkler and coupled-spring 
models and is represented in the program by surface finite 
elements.  The structure and foundation are represented by 
conventional rectangular finite elements which enable any 
raft geometry and load distribution to be dealt with easily. 
   Once the mound shape has been defined the initial area 
of contact between it and the raft is readily determined.  
When the self weight, dead and live loadings are applied, the 
raft undergoes immediate settlements which is determined 
by putting the appropriate elastic properties of the soil and 
the slab into the program.  As deflections take place, the 
contact area normally increases and therefore iterations must 
be carried out to obtain the equilibrium solution. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.18.  Edge Moisture Variation Distances for Edge Lift Case 
(after Lytton 1994). 
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CHAPTER III 
SOIL SUCTION AND EXPANSIVE SOILS 
 
3.1 Soil Suction Concept  

Many techniques have been developed to determine the 
properties of unsaturated soils.  Of these properties, soil 
suction has proven to be most favorable as it takes into 
account many of the fundamental concepts associated with 
the behavior of unsaturated soils (Mitchell and Avalle 1984).  
Soil suction is one of the most important parameters 
describing the moisture condition of unsaturated soils.   

In general, porous materials have a fundamental ability 
to attract and retain water.  The existence of this 
fundamental property in soils is described in engineering 
terms as suction, negative stress in the pore water.  In 
engineering practice, soil suction is composed of two 
components: matric and osmotic suction.  The sum of matric 
and osmotic suction is called total suction.  Matric suction 
comes from the capillarity, texture, and surface adsorptive 
forces of the soil.  Osmotic suction arises from the dissolved 
salts contained in the soil water.  This relationship can be 
formed in an equation as follows 

 

πhhh mt +=                                                                     (3.1) 
 
where ht is total suction, hm is matric suction, and hπ is 
osmotic suction. 

Total suction can be calculated using Kelvin’s 
equation, which is derived from the ideal gas law using the 
principles of thermodynamics and is given as  
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






=

o
t P

P
V
RT

h ln                                                               (3.2) 

 
where: 
ht    =  total suction, 
R    =  universal gas constant, 
T    =  absolute temperature, 
V    =  molecular volume of water, 
P / Po =  relative humidity, 
P    =  partial pressure of pore water vapor, and 
Po   =  saturation pressure of water vapor over a flat 
surface of pure water at the same temperature. 
   The total suction value of a soil sample can be inferred 
from the relative humidity and suction relationship (i.e., Eq. 
3.2) if the relative humidity is evaluated in some way.  In a 
closed system, if the water is pure enough, the partial 
pressure of the water vapor at equilibrium is equal to the 
saturated vapor pressure at temperature, T.  However, the 
partial pressure of the water vapor over a partly saturated 
soil will be less than the saturation vapor pressure of pure 
water due to the soil matrix structure and the free ions and 
salts contained in the soil water (Fredlund and Rahardjo 
1993).  Under isothermal conditions in closed systems the  

 
 
relative humidity may be associated with the water content 
of the system such as 100 percent relative humidity refers to 
a fully saturated condition.  The relative humidity and the 
water content relationship in closed environments is the 
basis behind the working principle of total suction 
measuring devices such as filter paper methods and 
psychrometers. 

In engineering practice, soil suction has usually been 
calculated in pF units (Schofield 1935) (i.e., suction in pF = 
log10(|suction in cm of water |)).  However, soil suction is 
also currently being represented in the log kPa unit system 
(i.e., suction in log kPa = log10(|suction in kPa|)).  The 
relationship between these two systems of units is 
approximately suction in log kPa = suction in pF – 1. 

Matric suction can be calculated from pressure plate 
and pressure membrane devices as the difference between 
the applied air pressure and water pressure across a porous 
plate.  Matric suction can be formed in a relationship, from 
equilibrium of pressures across the water meniscus, as 
follows 
 

( )wam uuh −−=                                                                (3.3) 
 
where hm is matric suction, ua is applied air pressure, and uw 
is free water pressure at atmospheric condition. 

The osmotic suction of electrolyte solutions, that are 
usually employed in the calibration of filter papers and 
psychrometers, can be calculated using the relationship 
between osmotic coefficients and osmotic suction.  Osmotic 
coefficients are readily available in the literature for many 
different salt solutions.  Table 3.1 gives the osmotic 
coefficients for several salt solutions. 
   Osmotic coefficients can also be obtained from the 
following relationship (Lang 1967) as 
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ρφ                                                            (3.4) 

 
where: 
φ    =  osmotic coefficient (dimensionless), 
v    =  number of ions from one molecule of salt (i.e., v = 
2 for NaCl, KCl, NH4 Cl and v = 3 for Na2SO4, CaCl2, 
Na2S2O3, etc.), 
m   =  molality, moles solute per 1000g solvent, 
w    =  molecular mass of water, 
ρw   =  density of water, 
P/Po  =  relative humidity, 
P    =  partial pressure of pore water vapor, and 
Po   =  saturation pressure of water vapor over a flat 
surface of pure water at the same temperature. 
   The relative humidity term, P/Po, in Eq. 3.4 is also 
known as the activity of water, aw, in physical chemistry of 
electrolyte solutions.  The combination of Eq. 3.2 and Eq. 
3.4 gives a useful relationship that can be adopted to 
calculate osmotic suctions for different salt solutions as  
 

φπ vRTmh −=                                                                   (3.5) 
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   Table 3.2 gives osmotic suctions for several salt 
solutions using osmotic coefficients from Table 3.1 and Eq. 
3.5. 
 

 
   Unsaturated soils consist of three phases: soil solid, 
water, and air, and the interaction of these phases is very 
complex.  Soil suction, or free energy of soil water, which is 
a thermodynamic quantity, is the parameter that describes 
the behavior of unsaturated soils.  A brief attempt has been 
made to describe soil suction, or Gibbs free energy of soil 
water, from the viewpoint of thermodynamics in Appendix 
A. 
 
3.2 Soil Suction Measurement 
   The measurement of soil suction is crucial for applying 
the theories of the engineering behavior of unsaturated soils.  
With a reliable soil suction measurement technique, the 
initial and final soil suction profiles can be obtained from 
samples taken at convenient depth intervals.  The change in 
suction with seasonal moisture movement is valuable 
information for many engineering applications. 

There are several commonly used soil suction 
measuring devices in the current geotechnical practice such 
as filter paper, transistor psychrometer, thermocouple 
psychrometer, pressure plate and membrane.  With the filter 
paper method, both total and matric suction measurements 
are possible, but one can only measure total suction with the 
psychrometers and matric suction with the pressure plates or 
membranes. 
 
3.2.1 The Filter Paper Method 

The filter paper method has long been used in soil 
science and engineering practice and it has recently been 
accepted as an adaptable test method for soil suction 
measurements because of its advantages over other suction 
measurement devices.  The filter paper method is an 
inexpensive and relatively simple laboratory test method, 

from which both total and matric suction measurements are 
possible.   

  Basically, the filter paper comes to equilibrium with 
the soil either through vapor (total suction measurement) or 
liquid (matric suction measurement) flow.  At equilibrium, 
the suction value of the filter paper and the soil will be 
equal.  After equilibrium is established between the filter 
paper and the soil, the water content of the filter paper disc is 
measured.  Then, by using a filter paper water content versus 
suction calibration curve developed using osmotic salt 
solutions, the corresponding suction value is found from the 
curve. 
 

 
3.2.1.1 Background of the Filter Paper Method 

The filter paper method, which was developed in 
Europe in the 1920s, came to the United States in 1937 with 
Gardner (1937) started its initial applications in the field of 
soil science.  Since then, the filter paper method has been 
used and investigated by numerous researchers.  Many 
research scientists have tackled different aspects of the filter 
paper method.  Different types of materials were used, such 
as filter papers and suction measuring devices, and different 
experimental techniques to calibrate the filter paper and to 
measure suction of the soil sample.  Therefore, it is very 
difficult to compare these methods on a one-to-one basis.  
All the calibration curves established from Gardner (1937) 
to Swarbrick (1995) appear to have been constructed as a 
single curve by using different filter papers, a combination 
of different soil suction measuring devices, and different 
calibrating testing procedures.  However, Houston et al. 
(1994) developed two different calibration curves; one for 
total suction and one for matric suction measurements using 
Fisher quantitative coarse filter papers.  For the total suction 
calibration curve, saturated salt solutions and for the matric 
suction calibration curve tensiometers and pressure 
membranes were employed.  Houston et al. (1994) reported 
that the total and matric suction calibration curves were not 
compatible.  This simply implies that two different 
calibration curves, one for matric and one for total suction, 
need to be used in soil suction measurements.  However, it is 
believed that the two curves reflect an expected hysteresis 
between wetting and drying effects and that the appropriate 
curve for both matric and total suction is the wetting curve 

Table 3.1.  Osmotic Coefficients for Several Salt Solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.2.  Osmotic Suctions of Several Salt Solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Osmotic Coefficients 
at 25oC 

Molality 
(m) NaCla KCla NH4Cla Na2SO4

b CaCl2
c Na2S2O3

b MgCl2
c 

0.0010 0.9880 0.9880 0.9880 0.9608 0.9623 0.9613 0.9627 
0.0020 0.9840 0.9840 09840 0.9466 0.9493 0.9475 0.9501 
0.0050 0.9760 0.9760 0.9760 0.9212 0.9274 0.9231 0.9292 
0.0100 0.9680 0.9670 0.9670 0.8965 0.9076 0.8999 0.9106 
0.0200 0.9590 0.9570 0.9570 0.8672 0.8866 0.8729 0.8916 

0.0500 0.9440 0.9400 0.9410 0.8229 0.8619 0.8333 0.8708 
0.1000 0.9330 0.9270 0.9270 0.7869 0.8516 0.8025 0.8648 
0.2000 0.9240 0.9130 0.9130 0.7494 0.8568 0.7719 0.8760 
0.3000 0.9210 0.9060 0.9060 0.7262 0.8721 0.7540 0.8963 
0.4000 0.9200 0.9020 0.9020 0.7088 0.8915 0.7415 0.9206 

0.5000 0.9210 0.9000 0.9000 0.6945 0.9134 0.7320 0.9475 
0.6000 0.9230 0.8990 0.8980 0.6824 0.9370 0.7247 0.9765 
0.7000 0.9260 0.8980 0.8970 0.6720 0.9621 0.7192 1.0073 
0.8000 0.9290 0.8980 0.8970 0.6629 0.9884 0.7151 1.0398 
0.9000 0.9320 0.8980 0.8970 0.6550 1.0159 0.7123 1.0738 

1.0000 0.9360 0.8980 0.8970 0.6481 1.0444 0.7107 1.1092 
1.2000 0.9440 0.9000 0.8980 …  …  …  … 
1.4000 0.9530 0.9020 0.9000 …  …  …  … 
1.5000 … … …  0.6273 1.2004 0.7166 1.3047 
1.6000 0.9620 0.9050 0.9020 …  …  …  … 
1.8000 0.9730 0.9080 0.9050 …  …  …  … 

2.0000 0.9840 0.9120 0.9080 0.6257 1.3754 0.7410 1.5250 
2.5000 1.0130 0.9230 0.9170 0.6401 1.5660 0.7793 1.7629 

References:  
aHamer and Wu 1972 
bGoldberg 1981 
cGoldberg and Nuttell 1978 

 

Osmotic Suctions in kPa 
at 25oC 

Molality 
(m) 

NaCl KCl NH4Cl Na2SO4 CaCl2 Na2S2O3 MgCl2 

0.001 5 5 5 7 7 7 7 
0.002 10 10 10 14 14 14 14 
0.005 24 24 24 34 34 34 35 
0.010 48 48 48 67 67 67 68 
0.020 95 95 95 129 132 130 133 
0.050 234 233 233 306 320 310 324 
0.100 463 460 460 585 633 597 643 
0.200 916 905 905 1115 1274 1148 1303 
0.300 1370 1348 1348 1620 1946 1682 2000 
0.400 1824 1789 1789 2108 2652 2206 2739 
0.500 2283 2231 2231 2582 3396 2722 3523 
0.600 2746 2674 2671 3045 4181 3234 4357 
0.700 3214 3116 3113 3498 5008 3744 5244 
0.800 3685 3562 3558 3944 5880 4254 6186 
0.900 4159 4007 4002 4384 6799 4767 7187 
1.000 4641 4452 4447 4820 7767 5285 8249 
1.200 5616 5354 5343 … … … … 
1.400 6615 6261 6247 … … … … 
1.500 … … … 6998 13391 7994 14554 
1.600 7631 7179 7155 … … … … 
1.800 8683 8104 8076 … … … … 
2.000 9757 9043 9003 9306 20457 11021 22682 
2.500 12556 11440 11366 11901 29115 14489 32776 
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since this matches the process that the filter paper undergoes 
in the measurement process. 
 
3.2.1.2 Calibration of the Filter Papers  

The calibration for the suction wetting curve for filter 
paper using salt solutions is based upon the thermodynamic 
relationship between total suction (or osmotic suction) and 
the relative humidity resulting from a specific concentration 
of a salt in distilled water.  Pressure plate and pressure 
membrane devices are usually employed in the drying filter 
paper calibration.  The pressure plate apparatus can measure 
matric suction values up to 150 kPa.  However, with the 
pressure membrane device matric suction values can be 
extended up to 10,000 kPa. 

A wetting curve using sodium chloride solutions and a 
drying curve using pressure plate and pressure membrane 
devices were constructed by the author for Schleicher & 
Schuell No. 589-WH filter papers.  The calibration curves 
are shown in Fig. 3.1.  As it is seen from the figure the 
wetting curve plots below the drying suction curve, as is 
expected of the hysteresis process.  

 

 
3.2.1.3 Soil Total and Matric Suction Measurements with 
the Filter Paper 

Soil total suction measurements are similar to those 
measurements in the filter paper calibration testing.  The 
same testing procedure can be followed by replacing the salt 
solution with a soil sample.  Soil matric suction 
measurements are also similar to the total suction 
measurements except that an intimate contact should be 
provided between the filter paper and the soil.  A suggested 
testing procedure for soil total and matric suction 
measurements using filter papers is outlined in Appendix B. 

 
3.2.2 Thermocouple Psychrometers  
   The thermocouple psychrometer is currently one of the 
most widely used methods of soil suction determination 
which can be used either in the field or the laboratory.   
Spanner (1951) described a method of measuring vapor 
pressure without the need to place a drop of water on the 
evaporating junction.  The Peltier effect is used to condense 
a drop of water on the evaporating junction.  A typical 

drawing of a thermocouple psychrometer is depicted in Fig. 
3.2. 
 

 
   Peltier in 1834 discovered that upon passing a current 
across a junction of two dissimilar metals, there is an 
absorption of heat at the junction, causing the temperature to 
rise or fall, depending on the direction of applied current.  If 
the degree of cooling is sufficient enough to bring the 
junction below the dew point of the surrounding moisture, 
the moisture will condense on the junction.  Initially, the 
thermocouple is cooled below the dew point temperature by 
passing a current through the junction.  Once the instrument 
is cooled, the thermocouple is controlled by the evaporation 
or condensation of the water on the junction.  The 
temperature of the thermocouple then converges to the dew 
point where evaporation ceases and the temperature remains 
constant.  The current necessary for the tip to accomplish 
this and remain at the dew point is related to the relative 
humidity.  A relationship between micro-voltage and soil 
suction is established by calibration tests as shown in Fig. 
3.3.  

 
   The thermocouple psychrometers can cover the range 
of relative humidities from 94% to close to 100%, 
corresponding to the suction values up to 8,000 kPa.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.1.  Wetting and Drying Filter Paper Calibration Curves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.2.  Schematic Drawing of a Thermocouple Psychrometer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.3.  A Typical Thermocouple Psychrometer Calibration 
Curve. 
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However, in order to measure suctions to an accuracy of 
about 10 kPa, the apparatus must be capable of 
distinguishing dew points to the order of 0.001o C (Spanner 
1951).  This factor puts a severe limitation on the accuracy 
of the thermocouple psychrometers.  The reliable resolution 
of the thermocouple psycrometers is in the order of 100 kPa 
(Lee 1991). 
 
3.2.3 Transistor Psychrometers  
   With the rapid progress in microchip technology over 
the last twenty years it has now become possible to use 
transistors for measuring relative humidity.  The transistor 
psychrometer has been developed in Australia to effectively 
replace the thermocouple psychrometer for total suction 
measurement.  The transistor psychrometer operates in a 
thermally insulated bath.  The variation of room temperature 
is controlled to be within ±0.5oC.  The transistor 
psychrometer is capable of measuring total suction ranging 
from 100 kPa (about 3 pF) to 10,000 kPa (about 5.5 pF) with 
an accuracy of about ±10 kPa (±0.01 pF).  This accuracy is 
greater than that required for most engineering applications. 
   The psychrometer system consists of the following 
parts: the probes, a thermally insulated bath, and the constant 
temperature room.  For the calibration of the probes and the 
testing stages, the probes are enclosed in a thermally 
insulated bath.  Standard salt solutions are used for 
calibrating the probes.  A typical drawing of a transistor 
psychrometer probe is depicted in Fig. 3.4. 
 

 
 
   There are two transistors, the wet and dry bulb 
transistors, within each of the probe.  The transistors are 
very sensitive to minor changes in temperature and thus a 
constant temperature environment is important.  The flow of 
water molecules from the water drop to the saturated filter 
paper (saturated with the salt solution for the calibration or 
conditioning) or the surface of a soil specimen produces 
cooling of the wet transistor relative to the dry transistor.  
The temperature differences recorded in millivolts (mV) are 
converted to a total suction for each of the specimens tested. 
 
 

3.2.4 Pressure Plate and Pressure Membrane 
   The pressure plate and pressure membrane devices and 
methods were developed in the soil science field to study the 
water uptake and retention of soils.  The soil water 
characteristic curve which is obtained by plotting various 
applied pressures (matric suctions) against the water 
contents of soil specimens has wide areas of application in 
geotechnical engineering.  The main components of the 
pressure plate and membrane apparatus are a pressure 
chamber, a porous ceramic plate or cellulose membrane, and 
an air compressor.  A typical schematic drawing of a 
pressure plate or pressure membrane apparatus is shown in 
Fig. 3.5. 

 
   The main difference between the pressure plate and 
pressure membrane devices is that the former uses a ceramic 
porous disk that can be used for pressures up to 150 kPa and 
the later uses cellulose membranes with which pressures can 
be extended up to 10,000 kPa.  The ceramic disks are rigid 
enough to carry the soil specimens on them, but a support is 
provided for the highly flexible membrane. 

Prior to each test, the porous plate or the membrane is 
completely saturated with distilled water and then sealed 
within the pressure chamber along with the soil specimens 
which rested on the surface of the plate or membrane (Fig. 
3.5).  With the influence of the applied air pressure, the 
moisture inside the soil specimen and the ceramic plate or 
the membrane is expelled out and collected in a graduated 
cylinder until a suction equilibrium is reached between the 
soil specimen and the applied air pressure.  At equilibrium, 
the suction inside the soil specimen equals the applied air 
pressure.  The air pressure is then released and the moisture 
content of the soil specimen is determined. 
 
3.3 Expansive Soils  

Expansive soils cause damages to structures due to soil 
volume changes induced by changes in soil moisture 
conditions (soil suction).  Swelling or shrinkage does not 
occur uniformly within the soil mass underlying the 
structure and thus results in differential soil movements.  It 
is this differential movement that causes major distress in 
lightweight structures such as houses, warehouses, and 
pavements. The typical damages caused by the expansive 
soil are cracking in building walls, distorted foundation 
slabs, and misaligned or broken utility pipelines.  Expansive 
soil is one of the most costly natural disasters in the U.S., 
although its destructive impact is not as catastrophic as 
earthquakes or tornadoes, but it is responsible for $2.2 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.5.  A Schematic Drawing of a Pressure Plate or Pressure 
Membrane Device. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.4.  A Schematic Drawing of a Transistor Psychrometer 
Probe. 
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billion in structural damages each year (Jones and Holtz 
1973).  The primary problem that arises with expansive soil 
is its volume change and high swelling pressure as the soil 
moisture state changes.   

Not all soils create problems due to swelling when 
brought into contact with a water source.  Only soils with 
high swelling potential will cause damage to buildings.  The 
clay minerals are generally classified into three main groups 
for most engineering purposes as kaolinite, illite, and 
montmorillonite.  Montmorillonites undergo greater volume 
changes upon changes in suction than do kaolinites and 
illites.  In these soils large magnitudes of volume strains are 
involved that it is not possible to predict with the classical 
soil mechanics principles.  
 
3.3.1 Clay Minerals 
   Clay soils are generally composites of different 
combinations of several clay minerals, such as kaolinites, 
illites, and montmorillonites.  These clay minerals are tiny 
crystalline substances with particle sizes ranging from 10-6 
mm to 1µm, and are generally referred to as colloids.  
Unlike sands and silts, the grain size distribution of clays has 
almost no influence on the engineering behavior whereas 
colloidal properties such as adsorption of water due to large 
specific surface area of the particles dominate the 
performance of the clay soils (Grim 1953, Hillel 1980). 
   Clay minerals are formed by chemical weathering of 
rock forming minerals (i.e., decomposition of the primary 
minerals and their recomposition into new ones).  
Chemically, clay minera ls are hydrous alumino-silicates.  
Typical alumino-silicate clay minerals exist as layered 
microcrystals, composed of two fundamental structural 
units: the silicon-oxygen tetrahedron and the aluminum-
oxygen or hydroxyl octahedron unit.  The units are bonded 
together into “sheets”.  Stacking of these sheets, along with 
different bonding in the crystal lattice, define the different 
clay minerals.  Understanding the structure of clay minerals 
helps define the micro-scale mechanisms of shrink and swell 
behavior of expansive soils.  For the purpose of 
distinguishing expanding and nonexpanding clay minerals, it 
is sufficient to describe the common kaolinite, 
montmorillonite, and illite minerals in engineering practice. 
 
3.3.1.1 Kaolinite Minerals  
   Kaolinite consists of alternating layers of silica and 
alumina sheet (i.e., 1:1 layer).  The layers are held together 
by hydrogen bonding between hydroxyls from the alumina 
sheet and oxygens from the silica sheet.  Such bonding is 
very strong, preventing water entering into the basic layers 
and allowing many layers to build up to make large crystals.  
A typical kaolinite crystal may be 70 to 100 layers thick 
(Guven 1996).  Due to the relatively large particle size and 
low specific surface area, kaolinite shows much less 
swelling than most other clay minerals. 
 
 
 
 
 
 
 

3.3.1.2 Illite Minerals  
   Illite is also a 2:1 type mineral with repeating layers of 
an alumina sheet in the middle and silica sheet at top and 
bottom.  Illite is very similar to montmorillonite but the 
layers in illite are bonded together strongly with potassium 
cations.  Such a tight bonding between layers prevents the 
expansion of the entire lattice and makes illite much less 
expansive than montmorillonite.  The engineering behavior 
of illite is between kaolinite and montmorillonite. 
 
3.3.1.3 Montmorillonite Minerals  
   Montmorillonite is made of repeating layers of an 
alumina sheet (gibbsite) sandwiched by two silica sheets 
(i.e., 2:1 layer).  The bonding between the silica sheets is 
weak thus water and exc hangeable ions can easily enter 
between the layers, pushing the layers further apart.  As a 
result, the soil volume increases significantly.  Because of 
the extremely small particle sizes and unbalanced charge in 
the octahedral sheet, mainly due to the isomorphous 
substitution of aluminum with magnesium or iron in the 
octahedral sheet, montmorillonite shows a distinctive 
swelling/shrinking behavior.  Upon wetting, montmorillonite 
clays may swell much more than its dry volume and when 
dried they tend to shrink and crack (Hillel 1980). 
 
3.3.2 Summary 
   Microscale mechanisms of shrink/swell behavior of 
expansive soils, such as clay-water interaction, are only 
useful for qualitative analysis, since the influence of the 
different components on volume change is difficult to 
separate.  Also, exact measurements for the type and amount 
of different clay minerals are practically impossible.  
Because of all these, the physical and/or mechanical 
properties of soils that reflect the microscale mechanisms of 
expansive soils can be described using the concepts of 
thermodynamics, especially the Gibbs free energy concept 
(soil suction).  Thermodynamics deals with energy and its 
transformation.  The energy associated with the physical and 
chemical interactions at microscale level within a clay-water 
system can therefore be transformed into another form of 
measurable energy using the principles of thermodynamics. 
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CHAPTER IV 
FOUNDATION MODEL  
 
4.1 Introduction  
       The analysis of the interaction between the slab 
foundations and the supporting soil foundation is of 
fundamental importance to geotechnical engineering.  Many 
of the available interaction models are primarily concerned 
with elastic analysis.  The slab and foundation soil 
interaction has been analyzed with the linear finite element 
method in this research.  The plate is considered to be an 
assemblage of rectangular finite elements and the behavior 
of each element is characterized by a stiffness matrix.  The 
element stiffness matrices are assembled into a total 
structural stiffness matrix by using the conditions of 
continuity of displacements and equilibrium of nodal forces.  
Once the plate model has been assembled, it must be 
connected, in some way, to the supporting soil foundation.  
This requires the derivation of foundation stiffness 
coefficients associated with the nodal points corresponding 
to those in the plate model. 
   In order to analyze an actual complex foundation 
problem, often certain assumptions have to be made.  The 
foundation is a very complex medium.  However, for the 
case of an elastic continuum, since it is the response of the 
foundation within the contact area and not the stresses or 
displacements inside the foundation soil which are of 
particular interest.  The problem reduces to finding a 
relatively simple mathematical expression which can 
describe the response of the foundation within the contact 
area with a reasonable degree of accuracy.  Many 
researchers have attempted to create a convenient model that 
properly represents the physical behavior of a real 
foundation.  Thus, a whole spectrum of foundation models is 
known; at one end is the Winkler model consisting of 
closely spaced, independent linear springs and at the other 
extreme is an elastic continuum.  There is a large class of 
foundation materials occurring in practice which can neither 
be represented by a Winkler type foundation or by an 
isotropic continuum.  To find a physically close and 
mathematically simple representation of such models for the 
soil-structure interaction, there are attempts made by 
Pasternak, Hetenyi, Filonenko-Borodich, and Vlasov which 
will be described in section 4.2. 
   In this study, the foundation is assumed to be an 
isotropic, homogeneous, and elastic half space.  The 
behavior of an elastic half space is calculated by dividing the 
surface of the elastic half space into rectangular regions.  
These regions are not proper finite elements in the usual 
sense, even though their behavior is represented by stiffness 
matrices and they are assembled in exactly same way as the 
plate finite elements.  Therefore, they may be called 
rectangular half space elements (Fig. 4.1 below). 
 
 

 
4.2 Foundation Models  
   The Winkler foundation is the simplest and the most 
widely used model.  Most of the finite element computer 
programs in use today are based on the Winkler (or spring) 
foundation models.  The spring foundation system results in 
a diagonal matrix that can easily be incorporated into a finite 
element program.  The simplest simulation of a continuous 
elastic foundation is  assumed to be composed of a number of 
closely spaced, vertical, independent, linear elastic springs 
providing vertical reaction only.  Such a reaction is assumed 
proportional to the deflection.  Thus, the relation between 
the pressure and the deflection of the foundation surface is  
 
p(x,y) = k⋅w(x,y)                                                                (4.1) 
 
where: 
p  =  applied vertical stress, 
w  =  vertical deflection, and 
k  =  foundation soil modulus. 

 
    Equation 4.1 indicates that the vertical force at point 
(x,y) depends only on the vertical deflection at the same 
point (x,y) and is independent of the deflections at all other 
points, so the stiffness matrix of a Winkler foundation is a 
diagonal matrix with zero coefficients everywhere except on 
the diagonal, those relating the vertical force to the vertical 
deflection at the same point.  Such a foundation is equivalent 
to a liquid base as if the foundation soil has no shear strength 
(Huang 1993).  The deformation occurs only immediately 
under the applied load (Fig. 4.2) and displacements are zero 
outside the loaded area.  It is evident that this type of 
foundation is not realistic for most real materials. 
   The equation of equilibrium governing the linear 
bending of an isotropic plate on a Winkler foundation of 
subgrade modulus, k, can be written as 
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Fig. 4.1.  Slab on Elastic Half-Space Foundation. 
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where, w is the vertical displacement, q is the distributed 
load, and D is the flexural rigidity of the slab.  According to 
the Winkler’s model, the vertical displacement of a slab is 
constant when it is subjected to a uniformly distributed load, 
q.  Also, the value of the subgrade elastic modulus, k, is not 
unique, but depends on the geometry of the slab. 

 
4.2.1 Pasternak Foundation 
   The extension of the Winkler model by including shear 
interaction between the spring elements is the Pasternak 
foundation model.  In order to introduce continuity of 
vertical displacements Pasternak assumes the existence of 
shear interactions between the spring elements.  Pasternak 
considers a plate consisting of incompressible vertical 
elements, which deforms only by transverse shear.  This 
plate is located on the top of the springs in order to connect 
their ends (Fig. 4.3 below).  The Pasternak model is 
governed by the following differential equation 
 

wGkwp 2∇−=                                                                (4.3) 
 
where: 
G  =  shear modulus, 

2

2

2

2
2

yx ∂
∂+

∂
∂=∇   the Laplacian operator. 

   The second term on the right hand side of Eq. 4.3 
represents the effect of the shear interaction.  For an 
arbitrarily distributed load p(ξ,η) over area A, the deflection 
of the foundation surface of a point Q(x,y,0) is  
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where: 
R     =  [(x−ξ)2 + (y−η)2]1/2, 
β2    =  k ⁄ G, and 
Κo(βR) =  modified Bessel function. 
The integration is taken over the loaded area.  
 
4.2.2 Hetenyi Foundation 
   In order to connect the top of the springs of Winkler’s 
foundation model and thus ensure interaction between the 
spring elements, Hetenyi chose a plate which deforms in 
bending only (Fig. 4.3 below).  The differential equation 
describing the physical behavior of this system is given as 
 

wDkwp 4∇−=                                                                (4.5) 
 

where: 
D  = the flexural rigidity of the plate and 
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4.2.3 Filonenko—Borodich Foundation 
   A similar approach to both Pasternak and Hetenyi 
Foundations to achieve the interaction between the spring 
elements was also used by Filonenko—Borodich.  The 
continuity between the individual spring elements is 
provided by connecting them to a thin elastic membrane. 
Filonenko—Borodich proposed to use an elastic membrane 
subjected to a constant tension field, T, as a connection for 
the top ends of the Winkler’s springs (Fig. 4.3).  The 
differential equation that represents the equilibrium of the 
proposed system is defined as 
 
p = kw − T∇2w                                                                  (4.6) 
 
where, T  is the tension field.  The two elastic constants 
necessary to characterize the soil model are k and T.  The 
models by Pasternak, Hetenyi, and Filonenko—Borodich, 
also known as two-parameter models, are all equal to the 
Winkler model if the parameters G, D, and T in Eq. 4.3, Eq. 
4.5, and Eq. 4.6, respectively, are taken as zero. 
 
4.2.4 Vlasov Foundation 
   Vlazov’s approach to the formulation of the soil model 
is based on the application of a variational method.  By 
imposing certain restrictions upon the possible distribution 
of displacements in an elastic layer, Vlazov was able to 
obtain a soil response function similar to the ones by 
Pasternak, Hetenyi, and Filonenko—Borodich.  The details 
of the general variational method of analysis of foundation 
models can be found in Vlazov and Leontiev (1966). 
 
4.3 Elastic Half Space (or Elastic Continuum) 
Foundation 
   The supporting foundation soil for the plate is 
considered to be an elastic, isotropic, and homogeneous 
semi -infinite continuum with Es and νs, modulus of elasticity 
and Poisson’s ratio of the soil, respectively.  The behavior of 
the half space, particularly the region located on its surface 
corresponding to the plate area, actually being the plate 
trace, is represented by a stiffness matrix.  This is achieved 
by numerical integration,  when the singularity occurs, of 

 
 
 
 
 
 
 
 
 
Fig. 4.2.   Winkler Foundation Model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.3.  Foundation Models. 
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Boussineq equation over a small sub-rectangular region of 
the rectangular finite elements.  Generally, a comparison 
between Winkler and elastic continuum foundations 
indicates that elastic continuum foundations have a much 
larger deflection basin (Poulos 2000).  In addition, a 
foundation soil will deform as in Fig. 4.2 under a 
concentrated load for the Winkler model and as in Fig. 4.4 
under the same load for the elastic half space foundation 
model, the latter is considered to be more realistic (Poulos 
2000). 
 

 
   A summary of the Boussinesq’s solution of the elastic 
half-space problem is given by Timoshenko and Goodier 
(1970).  In the Boussinesq formulation, the deflection at any 
point depends not only on the force at that point but also on 
the forces at all other points, which is a more realistic 
approach as compared to the Winkler’s model.  The 
horizontal displacements produced in the semi-infinite 
elastic space by the load P 
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where, u is the horizontal displacement, r and z are defined 
in Fig. 4.4.  At the boundary plane (z = 0), see Fig. 4.4, Eq. 
4.7 will take the form  
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The vertical displacement w produced in the elastic half-
space by the load P is given by 
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and at the boundary surface (z = 0), Eq. 4.9 becomes 
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   This is the form of equation that is frequently referred 
in foundation engineering applications.  However, it is better 
to rewrite Eq. 4.10 with some notations that are suitable for 
its modification in the finite element model formulation. 
   For the elastic half-space continuum model, the force-
deflection relationship (as given in Eq. 4.10) can be 
rewritten as 
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π
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where: 
wij  =  deflection at point i due to a force at point j, 
pj   =  force at point j, 
rij  =  distance between points i and j, 
Es   =  elastic modulus of the foundation soil, and 
νs  =  Poisson’s ratio of the foundation soil. 
   There is no known closed form solution to evaluate Eq. 
4.11 for the flexibility coefficients.  The only known 
approximate solutions are the ones by Cheung and 
Zienkiewicz (1965) and Huang (1993).  Cheung and 
Zienkiewicz (1965) considered the foundation consisting of 
a series of rectangular pressure areas whose centers coincide 
with the nodal points of the slab.  The flexibility coefficients 
are obtained by integrating the Boussinesq equation over the 
rectangular element area for the points at which the 
Boussinesq equation is not defined. 
   A similar technique to that of Huang (1993) is adopted 
in calculating the flexibility coefficients using a five-point 
Gauss quadrature formula in both x and y directions (Fig. 4.5 
below).  The foundation flexibility matrix is determined in 
two ways: direct and  numerical integration.  The flexibility 
matrix coefficients can be obtained directly if the point at 
which the deflection is sought and the point at which the 
vertical unit load is applied is different.  In other words, if i 
≠ j (Eq. 4.11), then the coefficients are obtained directly.  
However, if the point of interest for the deflection and the 
applied vertical unit load coincide, then Eq. 4.11 becomes 
singular and thus a numerical integration technique can be 
employed to overcome the singularity.   
   For a 4-noded linear rectangular finite element (Fig. 
4.5), the flexibility matrix of the foundation soil can be 
written as 
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Equation 4.12 can also be represented in a short form as 
follows 
 
{ } [ ]{ }jiji Pfw =                                                                (4.13) 

 
where: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.4.  Elastic Half Space Foundation. 
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The fij flexibility coefficients in Eq. 4.13 for the off-diagonal 
terms can be calculated from 
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However, if i = j, then the diagonal coefficients (i.e., f11, f22, 
f33, and f44) can only effectively be obtained by a numerical 
integration scheme.  In general, the numerical quadrature 
formula for a two-dimensional domain can be written as 
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where: 
N, M   =  number of Gauss (quadrature) points in the ξ 
and η directions (Fig. 4.6), 
(ξi, ηj  ) =  Gauss points, 
(Wi, Wj) =  Gauss weights, and 
F(ξ,η)  =  function to be integrated. 
 
Equation 4.11 needs be rewritten so that it can be 
transformed into a form of Eq. 4.15 as 
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The term in the brackets on the right side of Eq. 4.16 is a 
constant, so only the term in x and y needs to be numerically 
integrated over a rectangular region described by (xo,yo). 
 

( )
22

,
yx

P
yxF

+
=                                                        (4.17) 

 
The coordinates are transformed as 
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In order to obtain the flexibility coefficients from Eq. 4.16, 
the applied vertical load P is considered as a unit load, and 
also to make use of the numerical integration, this unit load 
is distributed over the specified area (xo,yo) as a uniform 
pressure of 1/(xo⋅yo).  Then, applying the above 
transformations to Eq. 4.17 results in 
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The Boussinesq equation in (ξ,η) coordinates takes the form 
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Equation 4.20 can further be reduced to 
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The flexibility coefficients of a 4—node rectangular element 
are then calculated directly using Eq. 4.14 and numerically 
using Eq. 4.21.  The stiffness matrix of the foundation soil 
can be obtained by inverting the flexibility coefficient 
matrix, [ fij ] as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.5.  A Typical 4-Node Linear Rectangular Finite Element. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.6.  Element Transformation. 
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[ ] [ ] 1−= ijij fG                                                                   (4.22) 

 
where, 
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is the stiffness matrix of the foundation for a 4—node linear 
rectangular finite element.  These stiffness matrices for each 
rectangular element are added to the corresponding stiffness 
matrices of the plate structure and then assembled together 
to result in the final stiffness matrix of the foundation—slab 
system.  
 
4.3.1 Soil Parameters Es and ννs 
   The effectiveness of a foundation model, in addition to 
a realis tic mathematical model, is also dependent on the 
accurate determination of the soil properties from either 
laboratory or field tests.  If a soil medium is considered to be 
a homogeneous isotropic linearly elastic continuum, then 
load—displacement relationship of every element within the 
soil mass can be described in terms of the elastic constants 
of the soil, Es and νs.  These are assumed to be intrinsic 
properties of the soil and therefore independent of the 
method of testing.  However, it is well known that the elastic 
constants for certain soils are dependent upon a variety of 
factors as the levels of isotropic and deviatoric stress applied 
to the specimen, stress history, type and rate of application 
of load, sample disturbance, moisture state, void ratio, 
particle size, and structure. 
 
4.3.1.1 Poisson’s Ratio ννs 
   Poisson’s ratio for a soil may be evaluated from the 
ratio of the radial strain to axial strain from a triaxial 
compression test.  It is found that, in general, the test 
procedure influences the value of Poisson’s ratio and the 
values determined by triaxial compression tests vary with 
the magnitude and range of the deviatoric stress (Bishop and 
Henkel 1962).  Some typical values for the Poisson’s ratio 
are given in Table 4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.1.2 Modulus of Elasticity Es 
   The modulus of elasticity is often determined from 
unconfined, triaxial, or oedometric compression tests.  Plate 
loading tests and pressuremeter tests may also be used to 
determine the in-situ modulus of elasticity of the soil.  Some 
typical values of the modulus of elasticity are shown in 
Table 4.2. 

 

 
 
 
 
 
 
 
 

Table 4.1.  Typical Poisson’s Ratio Values (after Bowles 1988). 

Type of Soil νs 

Clay, saturated 0.4—0.5 
Clay, unsaturated 0.1—0.3 
Sandy clay 0.2—0.3 
Silt 0.3—0.35 
Sand (dense) 0.2—0.4 
      gravelly sand −0.1—1.00 
      commonly used 0.3—0.4 
Rock 0.1—0.4 
Loess 0.1—0.3 
Concrete 0.15 
Ice 0.36 

 

Table 4.2.  Range of Values of Es for Some Soils (after Bowles 
1988). 

 
Es 

Type of Soil 

ksf Mpa 
Very soft clay 50—250 2—15 
Soft clay 100—500 5—25 
Medium clay 300—1000 15—50 
Hard clay 1000—2000 50—100 
Sandy clay 500—5000 25—250 
Silty sand 150—450 5—20 
Loose sand 200—500 10—25 
Dense sand 1000—1700 50—81 
Loose sand and gravel 1000—3000 50—150 
Dense sand and gravel 2000—4000 100—200 
Loess 300—1200 15—60 
Silt 40—400 2—20 
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CHAPTER V 
PLATE THEORY AND 
FINITE ELEMENT METHOD 
 
5.1 Introduction  
      The finite element method may be regarded as a 
generalization of standard structural analysis procedures, in 
particular the displacement method of analysis, which 
permits the evaluation of stresses and strains in a structure.  
The finite element method is a very powerful method for the 
solution of differential equations that are in the fields of 
engineering.  In the method, the structural domain is simply 
divided into regions (finite elements) of appropriate size and 
shape with all the material properties of the original domain 
being retained in the individual finite elements.  By 
assuming approximate displacement functions (interpolation 
functions or shape functions) within an element, it is 
possible to derive the stiffness matrix of a structure using the 
principles of energy theorems or virtual work.  If conditions 
of equilibrium are applied at every node of the discretized 
structure, a set of simultaneous algebraic equations can be 
formed, and the solution of these equations gives all the 
nodal displacements.  The internal stresses are then obtained 
using the calculated nodal displacement values.  A more 
complete treatment of the finite element method can be 
found in numerous books such as Reddy (1993), 
Zienkiewicz (1971), and Nath (1974). 
   Considerable research has been done for the 
development of finite plate elements for the analysis of the 
bending of plates.  Researchers have developed quite a 
number of elements (i.e., rectangular, triangular, 
quadrilateral, etc.) with varying number of nodal points 
along with different types of interpolation functions.  The 
aim of the researcher is to develop an element that has the 
least number of coefficients and at the same time satisfies 
the boundary conditions such as continuity of slopes. 
   In this chapter, the linear finite element models of the 
classical (or Kirchhoff or thin) and shear deformation (or 
Mindlin or thick) plate theories for the rectangular elements 
will be presented.  A simple four node-rectangular element 
is chosen because of the restrictions applied by the 
foundation model formulation, as it is discussed in Chapter 
IV.  A more complete treatment of the plate theories can be 
found in numerous books such as Timoshenko and 
Winowsky-Krieger (1968) and Ugural (1981).  Although, 
the thick plate theory is adopted for this research, the thin 
plate theory is also explained in order to understand the 
differences between both theories.  
 
5.2 Plate Material Properties  
   Before introducing the theory of plates along with their 
finite element models, it is necessary to describe some 
definitions and the constitutive equations that are related to 
the plate formulations.  The Mindlin plate employed in this 
study is composed of linear elastic and orthotropic material.  

The linear elasticity is governed by Hooke’s law, in which 
the components of stresses are related to the components of 
strains by elastic coefficients.  The static equilibrium of the 
stresses on an infinitesimal cubic element of dimensions dx, 
dy, and dz is shown in Fig. 5.1 below.  When the material 
properties are different in different directions, then such 
materials are called orthotropic. 
 

 
   If there are cases where the elastic properties of the 
material are not the same in different directions (i.e., if the 
material is anisotropic), then it is possible to represent 
different elastic properties in different directions.  However, 
for the present case it is assumed that the material of the 
plate has three planes of symmetry with respect to its elastic 
properties.  Hooke’s law, which relates the stresses to strains 
for an orthotropic material, can be written as 
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where Cij are the elastic coefficients.  The coefficient matrix 
Cij is symmetric (Reddy 1999).  So, if three orthogonal 
planes of material symmetry exist, then the number of elastic 
coefficients is reduced to nine.  The inverse of Eq. 5.1, 
which relates the strain-stress relationship, is given by 
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where the coefficients Hij are defined as 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.1.  Equilibrium of a Cubic Element Under Applied Stresses. 
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where  Ex, Ey , and Ez are Young’s moduli in x, y, and z 
directions respectively, νij is Poisson’s ratio and defined as 
the ratio of transverse strain in the jth direction to the axial 
strain in the ith direction when stress is applied in the ith 
direction, and Gxy, Gxz, and Gyz are the shear moduli in the x-
y, x-z, and y-z planes, respectively.  Since the coefficient 
matrix of Eq. 5.1 and its inverse (Eq. 5.2) are symmetric 
(Reddy 1993), the following relationships exist between the 
Young’s moduli and Poisson’s ratios 
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   As it can be seen from Eq. 5.2 and Eq. 5.3, there are 
only nine independent material coefficients Ex,  Ey,  Ez,  Gxy, 
Gxz, Gyz, νxy, νxz, and νyz for an orthotropic material.  If the 
material is isotropic, then Ex = Ey = Ez = E, Gxy = Gxz = Gyz = 
G, and νxy = νxz = νyz = ν . 
 
5.3 Finite Element Model of Kirchhoff Plate Theory 
   The displacement linear finite element model of the 
classical plate theory is presented in this section.  The finite 
element model of the plate is described for a 4-node 
rectangular element using the virtual work principles.  This 
element is one of the earlier finite element derived for the 
analysis of bending of thin plates (Zienkiewicz 1971).  The 
element has four nodes and three degrees of freedom at each 
node thus making a 12 degrees of freedom element.  The 
Kirchhoff plate theory has the following assumptions: 

1) the plate is thin and linearly elastic, 
2) the plate undergoes small lateral deflections, 
3) the transverse normals do not elongate, 
4) straight lines perpendicular to the mid-surface 

before deformation, remain straight after 
deformation, and 

5) the transverse normals rotate such that they remain 
perpendicular to the mid-surface after deformation. 

The assumptions imply that the strain in the z direction is 
zero (Fig. 5.2 below), that w is independent of z 
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According to Kirchhoff plate theory, the transverse shear 
strains are zero as well 
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Integration of the terms in Eq. 5.5 result in the following 
displacement fields with the assumption that the in-plane 
stretching of the plate is ignored, resulting in pure bending 
only. 
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The linear strains in the plate are defined as 
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The non-zero strains in terms of the transverse displacement 
w, using Eq. 5.6 and Eq. 5.7, can be written as 
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5.3.1 Principle of Virtual Work  
   This principle relates the forces in equilibrium to the 
corresponding displacements in a structure.  The name of the 
principle is derived from the fact that a fictitious (virtual) 
system of forces in equilibrium or of small virtual 
displacements is applied to the structure and these are related 
to the actual displacements or actual forces, respectively 
(Ghali and Neville 1978).  The principle of virtual 
displacements can be stated for a typical element as follows 
 

0=−≡ EI WWW δδδ                                                        (5.9) 
 
where δWI is the virtual strain energy stored in the element 
due to internal stresses and δWE is the work done by 
externally applied loads.  The internal strain energy can be 
written as  
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Fig. 5.2.  Kirchhoff Assumptions on Deformed Rectangular Plate. 
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and the external work done by a distributed load f on a plate 
element can be represented as  
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Then, Eq. 5.9 can be rewritten using the principles of virtual 
displacements 
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If the strains in Eq. 5.8 are substituted in Eq. 5.12 and the 
variation δ is carried on the w, the following relationship is 
obtained 
 

∫−∫ 





∂∂

∂−
∂
∂−

∂
∂−=

SV
xyyyxx wdxdyfdV

yx
w

z
y

w
z

x
w

z δσδσδσδ 2

2

2

2

2

20          (5.13) 

 
As it was mentioned earlier, the transverse displacement w is 
a function of x and y only and is independent of z, therefore, 
it is possible to rewrite the volume integral (Eq. 5.13) as 
follows 
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where h is the plate thickness and the values in brackets in 
Eq. 5.14 above are the internal bending moments Mxx, Myy, 
and Mxy (Fig. 5.3 below) per unit length along x and y axes 
and defined as 
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   For linear orthotropic slabs with the principal 
directions of orthotropy coinciding with the x and y axes, the 
bending moments are related to the derivatives of the 
transverse deflection w as 
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where Dx , D1, Dy, and Dxy are the orthotropic plate rigidities 
(Timoshenko  and Woinowsky-Krieger 1968) 
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where Ex, Ey, νxy, νyx, and Gxy are the orthotropic material 
constants, and h the thickness of the plate. 
 
 

    
The shear forces as shown in Fig. 5.3 can be calculated 

from 
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Substituting Eq. 5.16 into Eq. 5.14 results in 
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Equation 5.16 is also called the weak form of the problem 
(Reddy 1993).  The differential equation governing an 
orthotropic plate can be obtained from Eq. 5.19 as follows 
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where the moments (Mxx, Myy, and Mxy) were defined above. 
 
5.3.2 Displacement Function for the Finite Element 
Model 
   The rectangular bending element shown in Fig. 5.4 
below with three degrees of freedom (one deflection and two 
rotations) at each node, and thus constituting twelve degrees 
of freedom for the rectangular plate, is selected for this 
study.  The displacement function therefore can be chosen as 
a polynomial with twelve coefficients. The best arrangement 
of the coefficients within the polynomial can be written as 
 
w = c1 + c2 x + c3y + c4x2 + c5xy + c6y2 + c7x3 + c8x2y 
       + c9xy2 + c10y3 + c11x3y + c12x                                  (5.21) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.3.  Moment and Shear Force Resultants on a Rectangular 
Plate Element. 
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where ci are the coefficients to be determined. 
 

 
Equation 5.21 can also be written in terms of interpolation 
functions 
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where ∆i is the nodal values of the displacement w and its 
derivatives, and φi(x,y) are the Hermite interpolation 
functions that are readily available in the finite element 
books such as the ones by Zienkiewicz (1971) and Reddy 
(1993).  If Eq. 5.22 is substituted for the displacement w and 
the interpolation functions φi(x,y) for the variation of the 
displacement δw into Eq. 5.19, the following relationship 
can be obtained 
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where [K] is the stiffness matrix, {∆} is the displacement 
vector, and {f} is the load vector.  These matrices are 
defined as 
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dxdyff

S
ii ∫= φ                                                                 (5.25) 
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After Eq. 5.23 is solved for the displacements at every nodal 
point of the discretized plate, the bending moments and 
shear forces can be calculated using Eqs. 5.16 and 5.18, 
respectively, at the center of each rectangular finite element.  
The most accurate results of the stresses (bending and shear) 
for the linear rectangular elements can only be obtained at 
the center of the elements (Reddy 1993). 

5.4 Finite Element Model of Mindlin Plate Theory 
   This theory is very similar to the Kirchhoff theory 
except that it allows the transverse shear deformations 
within the plate.  Therefore, this theory is very suitable for 
analysis of thick plates.  The plate finite element model used 
in this research is based on the Mindlin plate theory.  In the 
formulation of the plate element, the assumptions adopted in 
the shear deformable plate can be summarized as: 

1) the plate is linearly elastic, 
2) the plate undergoes small lateral deflections, 
3) transverse normals do not elongate, 
4) straight lines perpendicular to the midsurface 

before deformation, remain straight after 
deformation, and 

5) the transverse normals to the midsurface before 
deformation remain straight but not necessarily 
normal to the midsurface after deformation. 

The last assumption results in a constant state of transverse 
shear strains through the thickness and zero transverse 
normal strains (Fig. 5.5 below).  The most significant 
difference between the classical and shear deformation 
theories is the effect of including transverse shear 
deformation on the predicted deflections.  Therefore, the 
strains 
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are not zero.  To derive the finite element model for the 
Mindlin plate, an approach similar to the Kirchhoff plate 
theory is taken. 
 
 5.4.1 Displacement Function 
   Since the normal before bending does not remain 
normal after bending, the slopes of the middle surface 
cannot be used to define u and v displacements, contrary to 
the Kirchhoff theory.  Thus, two new parameters such as 
rotations of the cross sections φx and φy are introduced into 
the theory.  The most important characteristic of the Mindlin 
theory is that the rotations are no longer partial derivatives 
of the lateral displacement function w.  It is, therefore, only 
necessary to use the Lagrange approximate functions as will 
be discussed in the coming sections.  Using these rotations, 
the Mindlin thick plate theory is based on the following 
displacement functions (Fig. 5.5) 
 

( )yxwwzvzu yx ,,, === φφ                 (5.28) 

 
The bending strains for the thick plate can be written as 
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The bending strains can also be represented in another form 
if Eq. 5.27 is plugged into Eq. 5.28 as 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.4.  Rectangular Bending Element. 
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5.4.2 Application of Virtual Work  
   The virtual work statements described in Section 5.2.1 
can be applied to the thick plate case as  
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If the linear bending strains in Eq. 5.30 are substituted in Eq. 
5.31 and the variation δ is carried on the φx , φy, and w, the 
following relationship can be obtained 
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Equation 5.32 can also be written as 
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where h is the plate thickness and the values in the brackets 
in Eq. 5.33 above are the bending moments and shear 
stresses (Fig. 5.3) defined as 
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   For linear orthotropic plates with the principal 
directions of orthotropy coinciding with the x and y axes, the 
bending moments and the shear stresses are related to the 
displacements (w, φx, φy) as (Reddy 1993) 
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where Cx and Cy  are defined by  
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where the (5/6) term is the shear correction coefficient, and 
Gxz and Gyz are the shear modulus values in the x-z and y-z 
planes, respectively.  The shear correction coefficient 
accounts for the difference between the distribution of 
transverse shear stresses of the Mindlin plate theory and the 
actual distribution of the stresses.  Substitution of Eq. 5.35 
into Eq. 5.33 results in 
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   Equation 5.33 can be partitioned according to the three 
displacements (w, φx, φy) into three weak form (Reddy 1993) 
equations as 
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The governing differential equations of the thick plate theory 
can be obtained from (a), (b), and (c) of Eq. 5.38 as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.5.  Mindlin Assumptions on Deformed Rectangular Plate. 
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and the combination of the terms (1), (2), and (3) of Eq. 5.39 
results in the same governing differential equation as for the 
thin plate theory (Eq. 5.20) 
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5.4.3 Interpolation Functions for the Finite Element 
Model 
    In the finite element model of the thick plates, the 
first-order displacements (w, φx, φy ) are involved, not their 
derivatives.  Therefore, the Lagrange interpolation functions 
can be adopted for this plate.  For a linear four-node 
rectangular element, the interpolation function is in the form 
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where ci the coefficients to be determined.  The interpolation 
functions in terms of the natural coordinates (ξ,η) are 
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where the properties of each interpolation function are 
shown in Fig. 5.6 below. 
   This element is very effective for the analysis of thick 
plates.  However, when analyzing thin plates, researchers 
have shown that the element stiffness matrix becomes too 
stiff (Reddy 1993).  For this reason, it is recommended to 
use reduced order schemes to integrate the equations 
involving the transverse shear terms. 
 
 
 
 
 
 
 
 
 
 
 
 

 
The displacement function can be written as 
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where ψj are the Lagrange interpolation functions, which can 
be found in the finite element books, and the displacements 
(w, φx, φy ) are defined in Fig. 5.4.  In general, the 
approximation functions for the w and (φx, φy) are 
polynomials of different degree.  However, the same 
function can be adopted for both the displacement and the 
rotations by employing reduced integration for the 
evaluation of stiffness coefficients associated with the 
transverse shear strains (Reddy 1993).  If Eq. 5.43 is 
substituted for the displacements (w, φx, φy) and the 
approximation functions ψj for the variation of the 
displacements (δw, δφx, δφy) into Eq. 5.37, the following 
relationship can be obtained 
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where [Kij] are the sub stiffness matrices, {w, θx, θy}T is the 
displacement vector, and {Pi} is the load vector and they are 
defined as 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.6.  Interpolation Functions for 4-Node Linear Rectangular 
Element. 
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and the force 
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For the four-node linear rectangular element with the three 
degrees of freedom (wi, φxi, φyi) at each node, the size of the 
element stiffness matrix is 12 × 12.  After Eq. 5.44 is solved 
for the displacements at every nodal point, the bending 
moments and shear forces are calculated at the center of 
each element using Eq. 5.35. 
   The Mindlin theory is adopted in this research for the 
analysis of plates using the finite element method.  For the 
thick plates, the transverse shear deformations may be 
significant, and in such cases it is better to use the Mindlin 
plate.  Actually, the Mindlin plate can be used for both thick 
and thin plates.  If the plate is thin, then the use of reduced 
integration scheme will overcome the problem of the 
coefficients of the stiffness matrix being too stiff (Reddy 
1993). 
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CHAPTER VI 
DESCRIPTION OF COMPUTER PROGRAM 
 
6.1 Introduction 
   The theoretical development of the finite element 
method formulation of the elastic shear deformable plate 
theory and the Boussinesq foundation model were 
implemented into a linear finite element computer code 
named RSLABN.  This computer program was developed in 
FORTRAN 77.  The program is in modular format; in other 
words, it consists of a number of subroutines, each of which 
performs a particular task within the main body of the 
program.  There are practically no limitations on the number 
of elements to be handled by the program; however, a fixed 
number of elements and nodes need to be assigned by 
adjusting the dimension statements within the program. 
   The theoretical background of the finite element 
method, the elastic shear deformable plate theory, and the 
elastic continuum foundation model have been described in 
detail in the previous chapters (i.e., Chapter IV and V).  This 
chapter, thus, concentrates only on the FORTRAN 
programming layout and structure of the program. 
 
6.2 General Description 
   RSLABN finite element method computer code can be 
used to analyze ribbed slabs or slabs of constant thickness on 
expansive as well as compressible soils.  A transient analysis 
is not considered and hence time dependency is not a factor 
in this program.  The program employs the small-
displacement theory and can consider orthotropic plate 
behavior so that two different Young’s modulus values can 
be assigned to the reinforced concrete slab in two 
perpendicular directions.  The foundation soil is modeled 
using the Boussinesq elastic continuum formulation.  The 
Boussinesq equation for surface deflection is used for 
determining the stiffness matrix of the foundation soil.  This 
is different than the more commonly known Winkler (or 
spring) model where the springs behave independent of each 
other while in an elastic continuum model there is 
interaction of neighboring soil elements.    
   The code accepts the vertical differential soil 
movements, ym, over the range of edge moisture variation 
distance, em, as input data to represent the distortion modes 
for expansive soils in calculating the displacements and the 
stresses within the slab.  As it has been mentioned in the 
previous chapters, there are mainly two types of critical 
foundation soil distortion modes due to the soil swelling and 
shrinking.  These modes of distortion create soil surfaces of 
mound shapes; edge lift and center lift cases.  The shape of 
the mounded soil surface varies according to an exponential 
curve which describes the differential movement of the soil.  
The differential movement is zero at a distance of em from 
the edge of the slab and increases to the full value of ym at 
the edge of the slab.  The equation of the mounded surface is  
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where x is the distance measured inward from the edge of 
the slab (Fig. 6.1).  The mound exponent may be set by the 
user in the program.  The mound exponent that was used in 
the PTI design method was 3 and was based upon the study 
of the shape of natural soil surfaces, gilgai (Spotts 1976; 
Wray 1989) and analytical transient predictions of the soil 
surface profiles (Wray 1978; Jayatilaka 1999; Gay 1994).   
   These values of y are the differential movements the 
soil would have in the absence of the weight of the slab 
which, because of its flexural rigidity, will suppress the 
higher spots of the differential movement (Fig. 6.1).  The 
problem of soil-slab interaction is solved by superimposing 
flexible slab on the unloaded differential soil profile. 

 
   Gaps occur between the slab and the soil at some points 
when the slab interacts with these mound shapes.  The code 
has an iterative scheme to check for the contact points.  
Figure 6.2 shows the general flow diagram of the RSLABN 
finite element computer program. 
 
6.2.1 Slab Geometry 
   Before running the program, it is necessary to sketch a 
plan view of the slab, divide the slab into rectangular finite 
elements of various sizes, and number the nodes and 
elements.  The program can handle any slab geometry 
composed of rectangular finite elements.  The nodal points 
and the elements as well can automatically be generated 
along a straight line provided that the nodal and element 
numbering system is in a systematic and sequential order.  In 
the program, the slab geometry is defined by the global x- 
and y-coordinates of each nodal point.  The use of 
rectangular ele ments limits the size of elements to be 
employed.  If small elements are used in some portion of the 
slab, the adjoining elements will be of the same width. 
   In the slab, it is most efficient if the nodes are 
numbered consecutively from bottom left to the right along 
the x-axis, starting from lower left corner, and then moving 
to the right until all nodes in the slab are numbered.  The 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.1.  Soil-Slab Interaction Resulting in Differential Slab 
Movement. 
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same numbering system can be followed for the elements.  
This numbering system will allow the automatic generation 
of the nodes and elements along a straight line, the 
systematic numbering of element connectivity information.  
The input data information, including the numbering system, 
is explained with an example in Appendix C.   

 
6.2.2 Beams  
   Stiffening beams can be generated both in x- and y-
directions.  Within the program, beams are created by 
increasing the depth of the slab along the corresponding 
beam locations.  The width of beams needs to match the 
width of finite elements along the beam direction (see Fig. 
6.3).  There are no any restrictions for the spacing of beams, 
they can be arranged with any spacing.  The beam depths 
can also vary from one beam to another. 
  

6.2.3 Loading  
   The program can handle several different loading 
conditions.  It only considers uniformly distributed loads, 
hence it does not accept point loads.  However, point loads 
can be considered as uniformly distributed loads on small 
finite element.  
   A uniformly distributed load can be applied all over the 
slab.  Any line load can be considered as a distributed load 
applied on small elements along a line in the same direction.  
The code can also automatically calculate the weight of the 
slab and apply it as a distributed load on the slab. 
 

 
6.2.4 Evaluation of Contact 
   The program has an iterative scheme for checking the 
contact points between the slab and the pre-deformed mound 
shapes for the center and edge lift conditions.  When gaps 
are developed at some points, the stiffness coefficients of the 
soil at those locations are set to zero.  The program goes 
through a number of iterations and checks for contact points 
between two successive iterations.  If the number of contact 
points between the previous and the current iteration are the 
same, then the program has converged.  It usually takes 
several iterations to converge to the real solution.  These 
types of problems are considered as non-linear in the 
geotechnical engineering discipline due to the partial contact 
conditions and the iteration schemes involved.  The program 
also permits incremental loading in the edge lift condition 
when a convergence problem is  encountered.  In this case, 
the unit weight of reinforced concrete is multiplied by an 
integer number greater than one, and the program reduces 
the unit weight to its real value while going through the 
iterations for the convergence of the slab contact points.  
 
6.2.5 The Output 
   The code calculates the displacements at each nodal 
point and the general forces (i.e., stresses, moments, and 
forces) at middle of each element.  These values are printed 
out with their corresponding global x- and y-coordinates.  A 
small MATLAB program was also developed to represent 
the numerical values obtained from the program into three-
dimensional plots.  The graphical plots help to interpret the 
overall structural behavior of slab foundations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.2.  Flow Diagram of RSLABN Finite Element Computer 
Program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.3.  Beam and Finite Element Dimension Compatibility. 
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6.3 General Outline of the Program 
In general, a finite element computer program consists 

of three basic parts: preprocessor, processor, and 
postprocessor.  A basic flow chart of the computer program 
is given in Fig. 6.4 and each subroutine is described in the 
coming sections. 

In the preprocessor part of the program, the input data 
of the problem are read in.  This includes the geometry (i.e., 
finite element coordinates and dimensions), the data of the 
problem (i.e., material properties for the slab as well as for 
the foundation soil, loading conditions), and indicators for 
various options (i.e., swelling, shrinking, and compressible 
soil profile options). 

In the processor part, all steps in the finite element 
method, as discussed in Chapter V, are performed.  These 
include the generation of the element matrices using 
numerical integration, assembly of element equations, 
imposition of the boundary conditions, and the solution of 
the simultaneous algebraic equations for the nodal values of 
the displacements and rotations. 
 

 
In the postprocessor part of the program, the solution 

for the moments and stresses are computed at the middle of 
each element.  For this part, the MATLAB option is also 
introduced to have a three-dimensional color plot of the 
displacements, bending and twisting moments, and shear 
forces. 
 
 
 
 
 
 
 
 
 
 
 
 

6.3.1 The Program Subroutines  
   The subroutines (Fig. 6.3) used in the main program 
have the following functions: 
   MESH2D: This subroutine is for generating the finite 
element mesh (i.e., the global coordinates of the nodal points 
and the connectivity array for general domains with four-
noded rectangular elements), element load information, and 
coordinate information of the stiffening beams. 
   BOUNRY: This is to impose the specified 
displacement type boundary conditions. 
   ELKMFR: This subroutine is for computing element 
matrices and vectors.  The element calculations are based on 
linear rectangular elements with an isoparametric 
formulation.  The ele ment matrices assembly is also 
performed here.  This subroutine calls in the SHPRCT, 
BOUDIA, BOUOFF, MINV, and COHES subroutines. 
   SHPRCT: This subroutine evaluates the interpolation 
functions and their derivatives with respect to global 
coordinates for Lagrange linear rectangular finite elements 
using the isoparametric formulation. 
   BOUDIA: This subroutine determines the flexibility 
matrix coefficients of the diagonal element for the 
Boussinesq foundation model. 
   BOUOFF: This subroutine determines the flexibility 
matrix coefficients of the off-diagonal element for the 
Boussinesq foundation model. 
   MINV: This subroutine forms the stiffness matrix for 
the Boussinesq foundation by inverting the flexibility matrix 
as obtained from the BOUDIA and BOUOFF subroutines. 
   COHES: This subroutine is for calculating the 
downdrag pressure on the stiffening beams caused by the 
cohesive shear strength of the soil. 
   SOLVER: This subroutine solves a banded, symmetric 
system of algebraic equations using the Gauss elimination 
method. 
   PSTPRC: This subroutine computes the stresses, 
moments, and shear forces at the middle of each element.  
MATLAB is a commercially available software package in 
the field of science and engineering.  It manipulates matrices 
and has very powerful features of plotting functions and 
matrices.  MATLAB can be adopted to plot nice color plots 
of displacements and stresses as calculated from the 
subroutine PSTPRC.  A small MATLAB program was 
written to have the transition of the displacements and 
stresses from numeric values into MATLAB plots.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.4.  Flow Chart of the Computer Program RSLABN. 
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CHAPTER VII 
APPLICATIONS OF THE COMPUTER PROGRAM 
 
7.1 Introduction 
   The RSLABN finite element computer program is 
compared in this chapter using several example problems 
from the PTI manual.  The results of these problems are 
compared with the solutions in the PTI manual.  There are 
no available computer codes, to the author’s knowledge, that 
the results from the RSLABN can be compared on a one-to-
one basis.  The only comparison can be made with the 
results from the PTI slab analysis and the opinions of some 
key researchers and engineers who have very extensive 
experience with slabs on expansive soil foundation systems.  
From that perspective, the RSLABN finite element computer 
code is a unique analysis program for the ribbed slabs 
resting on expansive soils. 
 
7.2 Verification of the Computer Program 
   The linear elastic analysis verification of the program 
mainly consists of solving 3 example problems contained in 
the PTI slab manual and then comparing the results with the 
PTI results.  Details of the example problems can be found 
in the PTI slab manual.  These example problems are:  (1) a 
residential slab on expansive soil constructed in a dry 
climate, (2) a residential slab on expansive soil constructed 
in a wet climate, and (3) a residential slab constructed on a 
compressible soil. 
 
7. 2. 1 Example One 
    A residential slab constructed on expansive soil is 
analyzed for the displacements and stresses using the finite 
element program developed in this study.  This slab is 
constructed in a dry climate, where the Thorntwaite 
Moisture Index is –16, in which the center lift condition 
generally controls the flexural design (Lytton and Meyer 
1971).  However, the slab is being analyzed for both center 
and edge lift conditions.  The input parameters used for the 
program are briefly summarized in Table 7.1 and the slab 
geometry is depicted in Fig. 7.1.  The slab is discretized into 
246 rectangular finite elements with 282 nodal points.  The 
slab plan geometry for example three is shown in Fig. 7.2. 
 
7.2.1.1 Example One Center Lift Analysis  
   The residential slab example is analyzed with the case 
of stiffening beams, as the beam locations are shown in Fig. 
7.1, and with the case of constant thickness.  The constant 
thickness slab is obtained by converting the ribbed slab into 
an equivalent thickness slab that has the same cross-
sectional moment of inertia as with the stiffening beam slab. 
These two analyses help to explain the distribution of the 
stresses  within a constant thickness slab and as well as a slab 
with the cross stiffening beams both in x- and y-directions.  
The comparison of the displacements, moments in x-
direction, twisting moments, and shears in the x-direction  

 

 

 
are depicted in Fig. 7.3, Fig. 7.4, Fig. 7.5, and Fig. 7.6, 
respectively.  The complete set of plots for the 
displacements, moments, and shear forces for both ribbed 
and constant thickness slabs are given in Appendix D. 

Table 7.1.  Input Parameters for the Example Problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:   Ec: Elastic moduli of the reinforced concrete slab, 
     νc: Poisson’s ratio of the reinforced concrete slab, 
     Es: Elastic moduli of the foundation soil, 
     νs: Poisson’s ratio of the foundation soil, and 
     γc: Unit weight of the reinforced concrete. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.1.  Example One and Example Two Slab Geometry. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.2.  Example Three Slab Geometry. 

Example 1 Example 2 Example 3
Case Swelling, Shrinking Swelling, Shrinking Compressible Soil

Geometry
Fig. 7.1 Fig. 7.1 Fig. 7.2

em—center lift 5.5 ft. 4.5 ft --

em—edge lift 2.5 ft. 5.5 ft --

ym—center lift 3.608 in. 0.9 in. --

ym—edge lift 0.752 in. 0.706 in. --
Perimeter Load 1040 lb/ft 1040 lb/ft 840 lb/ft
Live Load 40 psf 40 psf --
Beam Depth 24 in. (x and y dir.) 24 in. (x and y dir.) 24 in. (x and y dir.)
Beam Width 10 in. (x and y dir.) 12 in. (x and y dir.) 10 in. (x and y dir.)
Slab Thickness 4 in. 4 in. 4 in.
Ec 2.16E8 psf 2.16E8 psf 2.16E8 psf
νc 0.25 0.25 0.25
Es 1.44E5 psf 1.44E5 psf 1.44E5 psf
νs 0.4 0.4 0.4
γc 150 pcf 150 pcf 150 pcf

16 ft 26 ft

36 ft

24 ft

42 ft

Top
View

BEAMS

50 ft

14 ft

40 ft

38 ft

Top
ViewBeams
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a. Ribbed Slab                                                                                                                  b. Flat Slab 
Fig. 7.3.  Example One Center Lift Case, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Ribbed Slab                                                                                                                  b. Flat Slab 
Fig. 7.4.  Example One Center Lift Case, Moment in x-direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Ribbed Slab                                                                                                                b. Flat Slab 
Fig. 7.5.  Example One Center Lift Case, Twisting Moment. 
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 The comparison of results from the program and the 

PTI manual for Example 1 are depicted in Table 7.2.  As it is 
seen from Table 7.2, values for the maximum average 
moments and shear forces from the ribbed slab analysis are 
comparable with the PTI results.  However, the results from 
the constant thickness analysis are lower than the ones from 
both the ribbed and PTI slab analysis.  The differential 
deflection values obtained from the program for both the 
ribbed and constant thickness slabs are higher than the 
differential deflections from the PTI example.  But, the 
program results in more conservative the ∆/L ratios.  The 
∆/L ratios for the RSLABN analyses were found by 
determining the largest departure, ∆, from the straight line 
joining the high point to the low point.  The length of the 
line was taken as L. 
 
Table 7.2.  Comparison of Deflections and Stresses from Example 
No. 1, Center Lift Case. 
 Constant 

Thickness 
Slab 

(RSLABN 
Analysis) 

Ribbed Slab 
(RSLABN 
Analysis) 

Example No. 1 
PTI Manual 

(Design) 

Moment, Mx 
(kips ft/ft) 

4.79 11.52 11.509 

Moment, My 
(kips ft/ft) 

5.17 9.83 12.18 

Shear Force, Qx 
(kips/ft) 

0.93 1.85 2.105 

Shear Force, Qy 
(kips/ft) 

1.03 1.74 1.965 

Differential 
Deflection, δ 
(in.) (∆/L) 

1.01 
(1/2008) 

2.43 
(1/701) 

x-direct.   y-direct. 
  0.72          0.757 
(1/400)      (1/665) 

Note: L indicates the distance between maximum and minimum 
deflections. 
 

 The maximum average moment quantities shown in 
Table 7.2 for the ribbed slab are determined by adding the 
products of the moments in each plate element and dividing 
the sum by the width of the slab.  The same process is 
followed to determine the maximum average shear forces.  
The RSLABN finite element computer program will enable 
to demonstrate the soil-structure interaction behavior of the 
whole slab, which is simply not possible with the PTI  
 

 
method in which the overlapping method of rectangular 
slabs misses to show the critical stress points within the slab.  
As it is seen from Fig. 7.4, with the capability of handling 
the ribbed slab analysis, the program can calculate the 
moment concentrations within the beams and can predict 
their locations.  Structural engineers now will be able to 
design the beams for these high values of moments 
developed within the beams.  Twisting moments can als o be 
calculated with the program.  PTI method does not calculate 
these moments.  Figure 7.5 shows that twisting moments can 
reach very high values, which need special attention for 
design purposes. 
 
7.2.1.2 Example One Edge Lift Analysis  
   The constant thickness slab is obtained by converting 
the ribbed slab into an equivalent thickness slab that has the 
same cross-sectional moment of inertia as with the stiffening 
beam slab.  The comparison of the displacements, moments 
in x-direction, twisting moments, and shears in the x-
direction are depicted in Fig. 7.7, Fig. 7.8, Fig. 7.9, and Fig. 
7.10, respectively.  The complete set of plots for the 
displacements, moments, and shear forces for both ribbed 
and constant thickness slabs are given in  
Appendix D. 

The comparison of results from the program and the 
PTI manual for Example 1 are presented in Table 7.3 for the 
edge lift analysis case.  As it is seen from Table 7.3, values 
for the moments from the constant thickness slab analysis 
are comparable with the PTI results.  However, the results 
from the ribbed slab analysis are much higher than the ones 
from both the constant thickness and PTI slab analysis.  The 
program results in higher shear force values for both 
constant thickness and ribbed slab analysis than the PTI 
values.  The differential deflection values obtained from the 
program for both the ribbed and constant thickness slabs are 
higher than the differential deflections from the PTI 
example.  But, the program results in conservative ∆/L 
ratios.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Ribbed Slab                                                                                                         b. Flat Slab 
Fig. 7.6.  Example One Center Lift Case, Shear in x-direction. 



 38

 

 

 
 
 
 
 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Ribbed Slab                                                                                                                   b. Flat Slab 
Fig. 7.7.  Example One Edge Lift Case, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Ribbed Slab                                                                                                                   b. Flat Slab 
Fig. 7.8.  Example One Edge Lift Case, Moment in x-direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Ribbed Slab                                                                                                                   b. Flat Slab 
Fig. 7.9.  Example One Edge Lift Case, Twisting Moment. 



 39

 
   The RSLABN computer program adopts the thick plate 
(Mindlin plate) theory.  As slab thickness increases shear 
forces can become critical, and the program predicts that 
(Fig. 7.10) these forces can reach very high values at the 
reentrant corner of the slab. 
 
Table 7.3.  Comparison of Deflections and Stresses from Example 
No. 1, Edge Lift Case. 
 Constant 

Thickness 
Slab 

(RSLABN 
Analysis) 

Ribbed Slab 
(RSLABN 
Analysis) 

Example No. 1 
PTI Manual 

(Design) 

Moment, Mx 
(kips ft/ft) 

2.38 8.73 2.66 

Moment, My 
(kips ft/ft) 

2.29 11.10 3.01 

Shear Force, Qx 
(kips/ft) 

5.71 4.66 1.752 

Shear Force, Qy 
(kips/ft) 

3.10 4.37 1.681 

Differential 
Deflection, δ 
(in.) (∆/L) 

1.09 
(1/1366) 

1.46 
(1/1723) 

x-direct.   y-direct. 
  0.231        0.219 
(1/2182)   (1/1315) 

Note: L indicates the distance between maximum and minimum 
deflections. 
 
7.2.2 Example Two 
   Example two is very similar to Example one, the only 
differences (see Table 7.1) being in em, ym, and beam width 
values.  These parameters are among the most important 
variables for the slab analysis as their effects can be 
compared with the Example one results using Tables 7.4 and 
7.5.  This slab is also discretized into 246 rectangular finite 
elements with 282 nodal points.  The complete set of plots 
for the displacements, moments, and shear forces for both 
ribbed and constant thickness slabs as obtained from the 
program are given in Appendix E. 
   Table 7.4 summarizes the analysis results from the 
program for the center lift case.  The program results in 
comparable solutions for both constant thickness and ribbed 
slabs.  The PTI design values are conservative as its results 
compared with the values obtained from the program.  Due 
to the same slab geometry shape as with Example one slab, 
the soil-structure interaction behaviors for both examples are 
very alike.  However, as a result of changes in the  

 
parameters em and ym, and the difference in beam widths (see 
Table 7.1), there are differences in stress concentration 
values.  The whole spectrum of the differences can be seen 
from the plots in Appendix D and Appendix E.  
   Table 7.5 gives the results obtained from the program 
for the case of edge lift analysis.  The program results in 
lower solutions of the moments for the constant thickness 
slab and higher solutions of the moments for the ribbed slab 
as compared to the PTI results.  The program results in 
higher shear force values from both constant thickness and 
ribbed slab analysis than the PTI solutions for the shears. 
   Example one and Example two edge lift analysis cases 
indicate that the shear forces obtained by the program are 
higher than the shear forces obtained from PTI analysis.  
 
Table 7.4.  Comparison of Deflections and Stresses from Example 
No. 2, Center Lift Case. 
 Constant 

Thickness 
Slab 

(RSLABN 
Analysis) 

Ribbed Slab 
(RSLABN 
Analysis) 

Example No. 2 
PTI Manual 

(Design) 

Moment, Mx 
(kips ft/ft) 

6.50 6.4 7.09 

Moment, My 
(kips ft/ft) 

6.30 5.95 7.39 

Shear Force, Qx 
(kips/ft) 

1.15 1.00 1.40 

Shear Force, Qy 
(kips/ft) 

1.14 0.61 1.53 

Differential 
Deflection, δ 
(in.) (∆/L) 

1.195 
(1/1794) 

1.465 
(1/860) 

x-direct.   y-direct. 
  0.454        0.757 
 (1/634)    (1/1056) 

Note: L indicates the distance between maximum and minimum 
deflections. 
 
7.2.3 Example Three 
   The RSLABN computer program can also be employed 
for soil-structure interactions involving compressible soils 
with full contact conditions between the slab and the 
underlying foundation soil.  The program is used to analyze 
an example problem contained in the PTI manual.  The 
geometric shape of the slab is depicted in Fig. 7.2 and the 
variables used in the program are summarized in Table 7.1.  
The slab is discretized into 540 rectangular finite elements 
with 592 nodal points.  The complete set of plots for the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Ribbed Slab                                                                                                                   b. Flat Slab 
Fig. 7.10.  Example One Edge Lift Case, Shear in x-Direction. 
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displacements, moments, and shear forces for both ribbed 
and constant thickness slabs as obtained from the program 
are given in Appendix F. 
   Table 7.6 summarizes the results obtained from the 
program for the case of compressible soil with full contact 
condition.  The program predicts slightly higher moment 
values than the PTI moment results.  The program results in 
a higher shear force value in y-direction for the constant 
thickness slab, while all other values are lower than the PTI 
solutions. 
 
Table 7.5.  Comparison of Deflections and Stresses from Example 
No. 2, Edge Lift Case. 
 Constant 

Thickness 
Slab 

(RSLABN 
Analysis) 

Ribbed Slab 
(RSLABN 
Analysis) 

Example No. 2 
PTI Manual 

(Design) 

Moment, Mx 
(kips ft/ft) 

2.36 8.40 4.72 

Moment, My 
(kips ft/ft) 

4.00 10.76 6.09 

Shear Force, Qx 
(kips/ft) 

4.75 5.58 1.906 

Shear Force, Qy 
(kips/ft) 

4.87 4.26 1.828 

Differential 
Deflection, δ 
(in.) (∆/L) 

1.09 
(1/1366) 

1.46 
(1/1723) 

x-direct.   y-direct. 
  0.330        0.307 
 (1/872)    (1/1641) 

Note: L indicates the distance between maximum and minimum 
deflections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7.6.  Comparison of Deflections and Stresses from Example 
No. 3, Compressible Soil. 
 Constant 

Thickness 
Slab 

(RSLABN 
Analysis) 

Ribbed Slab 
(RSLABN 
Analysis) 

Example No. 3 
PTI Manual 

(Design) 

Moment, Mx 
(kips ft/ft) 

5.50 4.13 3.19 

Moment, My 
(kips ft/ft) 

4.70 4.03 3.42 

Shear Force, Qx 
(kips/ft) 

0.97 0.50 0.849 

Shear Force, Qy 
(kips/ft) 

2.7 0.58 0.831 

Differential 
Deflection, δ 
(in.) (∆/L) 

0.88 
(1/1869) 

1.561 
(1/881) 

x-direct.   y-direct. 
  0.124        0.124 
(1/3677)   (1/3870) 

Note: L indicates the distance between maximum and minimum 
deflections. 
 
 
 
 
 
 
 
 
 
 
 



 41

 
 
 
 
 
 
CHAPTER VIII 
SUMMARY, 
DESIGN TOOLS FOR SLABS ON EXPANSIVE SOILS  
 
8.1 Introduction 

In this chapter, basic design aids for slabs on expansive 
soils are summarized.  These aids are based on some new 
developments (Lytton 2001) in predicting the parameters for 
volume change behavior of expansive soils and the finite 
element computer program developed in this research study.  
The development and application of the program have been 
described in detail in previous chapters.  As it has been 
explained earlier, the main input data, regarding the 
expansive soil behavior, to the program are the vertical soil 
movement, ym, and edge moisture variation distance, em.  It 
is mainly for this reason that practical, easy-to-use design 
tools are needed for geotechnical practitioners to predict 
these variables accurately.   

The geotechnical engineer should have the basic 
knowledge of unsaturated expansive soils, their 
mineralogical information and distribution, climatic 
information of that particular location, and the effects of site 
conditions as trees, flower beds and ponds in order to 
calculate the ym and em parameters.  The geotechnical 
engineer usually provides these parameters to the structural 
engineer who designs the slab for the possible two worst soil 
support patterns; center lift and edge lift.  The structural 
engineer should be able to use such a slab analysis program 
as developed in this study for these soil support conditions to 
predict the differential displacements, moments, and shear 
forces for the design of the slab structure. 
 
8.2 Soil Movement   

The amount of swelling or shrinking that a soil profile 
will undergo depends on the thickness of the layer, type of 
clay mineral present, the surcharge pressure, and the severity 
of climatic change.  The expression relating the volumetric 
change (Eqs. 2.19 and 2.20) in a soil sample due to changes 
in suction and mean principal stress is widely used to 
calculate the vertical differential soil movement, ym.  The 
design values of ym for the edge lift and center lift conditions 
can be estimated either by the computer program VOLFLO-
2 or, in the absence of the computer program, by the soil 
movement tables generated for the cases of lawn irrigation, 
flower bed, and tree drying (Lytton 2001). 
 
8.2.1 VOLFLO -2 

The computer program VOLFLO-2 is based on the 
work by Naiser (1997) and was briefly described in Chapter 
II.  This program can be used to calculate the ym values for 
both transient and equilibrium conditions.  For instance, for 
the given suction values the suction profiles and amount of 
differential movements at any given month of the year can 
be calculated for a given number of climatic cycles per year 
as depicted in Fig. 8.1.  The program can also consider the 

effect of vertical moisture barriers and the distance between 
the edge of the slab and a tree (Fig. 8.1) to estimate the 
vertical differential soil movements.  

 
8.2.2 Soil Movement Tables  
   Lytton (2001) provided some guide numbers to 
estimate differential soil movements ym in the form of tables 
for different vegetation and soil surface conditions.  The 
guide numbers can be used in the following equation as 
 
ym = γh × (Guide Number from Table 8.1)                       (8.1) 
 
where γh is the volume change coefficient. 
 

The guide numbers for the cases of lawn irrigation, 
flower bed, tree drying case with and without vertical 
moisture barriers are presented in tables in Appendix H. 
 

 
8.3 Estimating Volume Change Coefficient 
   Covar (2001) presented a method for the estimation of 
the volume change coefficient, γh, using Atterberg limits, 
particle size classification, and the coefficient of linear 
extensibility (COLE) values.  The COLE test represents the 
fractional change in a clod sample resulting from changes in 
moisture content.  Covar (2001) produced a series of charts 
using a 6500 sample subset of 130,000 samples of the 
Natural Resources Conservation Services data base.  Figure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.1.  A typical Output from VOLFLO-2 (from Lytton 2001). 

Table 8.1.  Soil Movement Guide Numbers for Slab Design (Lytton 
2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ym Guide Numbers 

Controlling Surface Suction, pF 

Measured 
Suction pF 

at 
Depth, zm,  

m 2.5 2.7  3.0 3.5  4.0 4.2 4.5  

2.7  +3.2 0 -4.1  -13.6  -25.7 -31.3 -40.0 

3.0 +9.6 +5.1 0 -7.5 -18.2 -23.1 -31.3 

3.3 +17.7 +12.1 +5.1 -2.6 -11.5 -15.8 -23.1 

3.6 +27.1 +20.7 +12.1 +1.6 -5.7  -9.4 -15.8 

3.9 +38.1 +30.8 +20.7 +7.3 -1.3  -4.1 -9.4 

4.2 +50.4 +42.1 +30.8 +14.8 +3.2 0 -4.1 

4.5 +63.6 +54.7 +42.1 +23.9 +9.6 +5.1 0 
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8.2 depicts the distribution of these soil samples on the 
Casagrande’s Plasticity Index versus Liquid Limit chart. 
 

 
   The classification of soil samples, as shown in Fig. 8.2, 
results in eight different data groups, each representing a 
group with some mineralogical similarity.  The volume 
change guide number values were obtained for each data 
group.  The volume change coefficient, γh, is then obtained 
as follows 
 
γh = [Percent Fine Clay] × [Volume Change Guide Nu mber]     (8.2) 
 

The volume change guide numbers for the first data 
group (Fig. 8.2) are depicted in Fig. 8.3 and for the other 
zones they are presented in Appendix I. 
 

 
 

8.4 Edge Moisture Variation Distance (em) 
   The edge moisture variation distance depends on the 
diffusion coefficient (αd) of the unsaturated soil.  The 
unsaturated diffusion coefficient is also a function of 
suction, permeabilty, and the cracks in the soil.  Dry soils 
have a lower diffusion coefficient, and thus smaller edge 
moisture variation distance.  Similarly, wet soils have a 
higher coefficient, and larger edge moisture variation 
distance.  The basic lab tests, namely the liquid limit, plastic 
limit, plasticity index, percentage of soil passing No. 200 
sieve, and percentage of soil of total sample finer than 2 
microns are needed to estimate the edge moisture variation 
distance.  The edge moisture variation distances for both 
center lift and edge lift cases can be estimated from Fig. 8.4. 

 
This edge moisture variation distance can be reduced to 

a smaller distance with the use of vertical moisture barriers.  
Lytton (2001) developed charts to estimate the effects of 
vertical moisture barriers on the edge moisture variation 
distances and provided the following figures (Fig. 8.5, Fig. 
8.6, and Fig. 8.7) for variable depths of cracks from the 
ground surface to a distance of T. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.2. Expansive Soils Zones (from Lytton 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.3. Soil Volume Change Guide Numbers for Data Group 1 
(from Covar 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.4.  Estimating Edge Moisture Variation Distance (from 
Lytton 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.5.  Edge Moisture Variation Distances for T=1.5 ft. (from 
Lytton 2001).  
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8.5 Structural Analysis of Slab on Expansive Soil 
   Using the edge moisture variation distance, em, and 
differential soil movement, ym, the structural engineer can 
analyze the slab for displacements, moments, and shear 
forces and in turn use these results for design of the slab.  As 
explained in the above sections, the geotechnical engineer 
can provide the two important parameters (i.e., em and ym) 
using basic unsaturated soil mechanics principles and basic 
laboratory test results. 
   The RSLABN finite element computer program can 
effectively be employed for analyses of slabs constructed on 
expansive soils.  This program can calculate displacements, 
moments, shear forces based on a realistic soil-structure 
interaction model.     
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.6.  Edge Moisture Variation Distances for T=2.0 ft. (from 
Lytton 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.7.  Edge Moisture Variation Distances for T=2.5 ft. (from 
Lytton 2001). 
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CHAPTER IX 
CONCLUSIONS AND RECOMMENDATIONS  
 
9.1 Conclusions  

An analytical study was undertaken in this thesis to 
develop an improved analysis method for calculating the 
performance of slabs on expansive soils.  A Finite element 
method formulation of slabs on elastic continuum 
foundations was developed to analyze this complex soil-
structure system.  The shear deformable plate theory was 
formulated for use with the finite element method and the 
programming was done in FORTRAN.  The program was 
written such that it can accommodate the need of current 
practice for slab designs on problematic expansive soils.  
The program RSLABN developed in this study is improved 
in several significant ways over the program that was used to 
develop the PTI slab design method. 

To more correctly model the soil-structure interaction, 
the program can accommodate any practical geometric 
shapes, stiffening beams, and variable loading conditions.  In 
addition, the calculation of twisting moments is possible 
with this program.  The program can also model the 
anisotropic properties of the reinforced concrete slab in two 
perpendicular directions, mainly x- and y-directions.  The 
material properties for the reinforced concrete slab are 
Young’s modulus and Poisson’s ratio for the isotropic 
analysis and Young’s modulus in both x- and y-directions, 
Poisson’s ratio, and shear modulus values for the anisotropic 
analysis. 

The foundation soil was modeled as an elastic half-
space using the Boussinesq formulation.  The foundation 
model was incorporated into the program as surface finite 
elements.  Currently, due to the nature of the Boussinesq 
equation, it is only practical to use rectangular finite 
elements.  The elastic continuum model is much more 
realistic than the Winkler model because the continuum 
model has the ability of expressing the effects of elements 
on each other; this is not possible for the Winkler model in 
which the springs behave independently of each other.  The 
material properties for the Boussinesq foundation model are 
elastic soil modulus and Poisson’s ratio.  These parameters 
are more representative of the soil than the spring constant 
value for the Winkler model, which depends on the size and 
shape of the foundation. 

The RSLABN program was compared with the example 
problems in the PTI manual.  The analysis was done for a 
flat slab and a ribbed slab having the same cross sectional 
moment of inertia and the results were compared with the 
results in the PTI manual.  The following specific 
conclusions can be made from the results of the program for 
the center lift analysis (Table 7.2 and Table 7.4) based on 
two example problems: 

 
 
 

 
 
 
 
 
 
 
 
 
1. The program results in lower values of average 

maximum moments and shears for both constant 
thickness and ribbed slab as compared to the same 
stresses in the PTI manual. 

2. The differential deflections between the high and 
low points of the slab as calculated from the 
program for both flat and ribbed slab cases were 
higher than the deflections from the PTI analysis, 
but the curvatures were smaller, resulting in 
conservative ∆/L values. 

3. More importantly, with the program it is now 
possible to examine the overall behavior of the 
slab and to locate the stress concentrations for the 
purpose of design.  This was not entirely possible 
with the overlapping process of the PTI method, 
which was missing the stress concentration values 
and their locations. The analysis  emphasizes that 
the reentrant corners are the critical locations for 
stress concentrations.  It is also seen that the 
stiffening beams are carrying most of the stresses. 

4. With the program it is now possible to analyze and 
design for the twisting moments, which are seen to 
be critical at the corners.  

Similarly, the following specific conclusions can be 
made from the results of the program for the edge lift 
analysis (Table 7.3 and Table 7.5) based on two example 
problems contained in the PTI manual: 

1. The program results in higher values of average 
moments and shears for both constant thickness 
and ribbed slab analysis, except the moments in x- 
and y-directions in the case of constant thickness 
slab, as compared to the same stresses in the PTI 
manual. 

2. The differential deflections calculated from the 
program for both constant thickness and ribbed 
slab cases were higher than the deflections from 
the PTI method, while resulting in conservative 
∆/L values. 

These conclusions were made from analyzing only two 
example problems from the PTI manual; therefore, it is very 
difficult to generalize these conclusions for all slab types and 
different input variables.  

The third example problem from the PTI manual is 
based on a compressible soil case, in which full contact 
condition is assumed for the analysis.  The analysis was 
done for constant thickness slab and ribbed slab having the 
same cross-sectional moment of inertia and the results were 
compared with the results in the PTI manual.  The following 
specific conclusions can be made from the results of the  
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program for the analysis (Table 7.6) based on comparison 
with the example problem from the PTI manual: 

1. The program results in slightly higher values of 
average moments for both constant thickness and 
ribbed slab as compared to the same stresses in the 
PTI manual.  However, smaller maximum average 
shear force values are obtained in both constant 
thickness and ribbed slab analysis.  However, there 
is a very high peak value of shear force in the 
constant thickness slab analysis. 

2. The differential deflections calculated from the 
program for both constant thickness and ribbed 
slab cases were higher than the deflections from 
the PTI analysis, but the curvatures were smaller, 
resulting in conservative ∆/L values. 

 
9.2 Recommendations for Future Enhancement of the 
Program 
   The RSLABN finite element computer program 
developed in this thesis can further be improved with 
additional work undertaken in the following research areas: 

1. The number of degrees of freedom per node need 
to be increased from 3 to 5 in order to 
accommodate the analysis for the post-tensioning 
effects as a result of normal in plane stresses.  
With 5-degrees of freedom, which will make it a 
non-linear analysis, it is possible to have the 
effects of large displacements, which is usually a 
case in slabs on expansive soils. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. For use in forensic investigations, the program 
should be capable of representing cracks in the 
slab.  This can be done simply by altering the 
modulus of the plate element perpendicular to the 
direction of the crack. 

3. Currently, the program uses only rectangular finite 
elements.  This is mainly because of the 
singularity problem in the Boussinesq equation.  
This could be overcome by a numerical integration 
scheme that is  only applicable to rectangular finite 
elements.  A similar integration scheme can be 
developed for various finite elements as triangles, 
quadrilaterals, etc. 

4. Cross-anisotropic soil properties can be 
incorporated into the elastic half-space foundation 
soil model. 

5. 3-Dimensional versions of VOLFLO -2 or 
FLODEF can be developed and can be coupled 
with the RSLABN program to represent more 
realistic deformation patterns beneath the slab. 

6. The current program can be modified to handle 
various em and ym values at various locations 
within the slab. 

7. For possible pavement applications, the program 
needs to be equipped with coupled transient heat 
and moisture flow analysis to handle curling and 
warping as well as loss of support. 
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APPENDIX A 
THERMODYNAMIC VIEWPOINT OF THE 
SOIL SUCTION CONCEPT 
 
A.1 Introduction 

The soil, water, and air mixture is a dynamic and, 
chemically, a very complex system whose composition 
reflects the many reactions that can proceed simultaneously 
between the soil solid, water, and air.  The net result of these 
reactions may be considered as complex chemical 
interactions affected by changes, mainly, in the amount of 
water and air, and energy from the environment.  It is to this 
very complicated system that chemical thermodynamics 
must be applied (Sposito 1981). 

Study of thermodynamics of water in soil has been 
performed since the 1900’s in the field of soil science.  
Schofield (1935) proposed the concept of pF, the logarithm 
of the specific Gibbs free energy, and established the energy 
concept of water in soil.  From the point of view of 
thermodynamics, a soil is an assembly of solid, liquid, and 
gaseous, and gravitational and energy fields.  These 
characteristics define the thermodynamic soil system.  If 
chemical reactions are not of principal concern and if the 
chemical composition of each phase in the soil need not be 
known in detail, then the stresses in the pore water can be 
described by relatively simple thermodynamic relationships 
(Edlefsen and Anderson 1943).  From this perspective, it is 
assumed that the three components of the soil system do not 
react chemically and do not segregate at any time, and thus 
the soil is a homogeneous mixture.  This point of view is 
taken normally in soil physics. 
 
A.2 Free Energy of Soil Water 

Since thermodynamics deals with energy and its 
transformation, the most useful thermodynamic function, as 
far as the soil moisture is concerned, is free energy (Edlefsen 
and Anderson 1943).  The free energy of soil moisture 
depends on the adsorptive force field that surrounds a soil 
particle, the hydrostatic pressure on the soil moisture, the 
dissolved material present, and the temperature.  The free 
energy of soil moisture will decrease with the presence of a 
force field that surrounds clay soils and with the presence of 
dissolved salts in the soil water.   
   The free energy change of a system can be described 
simply by a body of free water in contact with an 
unsaturated soil and water flows from a body of free water 
(whose absolute specific free energy is f1) into an 
unsaturated soil (whose absolute specific free energy is f2).  
It is customary to use free, pure water under a pressure of 1 
atmosphere as the zero point or datum for the free energy of 
soil moisture.  The absolute free energy f2 of the unsaturated 
soil moisture is less than that of free, pure water.  Therefore, 
the free energy ∆f of soil moisture in all unsaturated soils is 
negative with respect to the commonly accepted datum.  The 
absolute free energy of the moisture in a comparatively dry  

 
 
 
 
 
 
 
 
 
 
 
soil is less than the absolute free energy of that in a wet soil.  
The free energy of the moisture is therefore always more 
negative in a drier soil than in a wetter soil.  If two phases of 
a system are in equilibrium with each other and are at the 
same temperature and under the same pressure, then both 
phases must posses the same absolute specific free energy.  
T typical units of the free energy are in gm-cm/gm or simply 
cm and pF. 

The energy status of water in soil with respect to that 
of free and pure water has been expressed with the use of 
Gibb’s free energy concept as defined by Edlefsen and 
Anderson (1943) by 

 
f = – e + Pv – Ts = h – Ts                                                (A1)  
 
where e is the internal energy of the system, P is the 
pressure, v is the specific volume, T is the absolute 
temperature, s is the entropy, and h is the heat content 
(enthalpy).   

The term entropy, s, which is used to describe and deal 
with energy changes associated primarily with the 
transformations of heat into other forms of energy in the 
field of thermodynamics, is an important parameter in the 
free energy description of soil moisture and is given by the 
following relationship 
 

dq
T

sss
B

A
AB ∫=−=∆

1
                                                       (A2) 

 
where A and B describes the two different states of the 
system.  However, the free energy concept combines all the 
criteria and characteristics of entropy in the study of the 
thermodynamics of soil moisture.   
   If Eq. A1 is differentiated the following relationship is 
obtained 
 
df = – de +  vdP + Pdv – sdT –  Tds                             (A3) 

  
If the total work done by the system is represented by 
 
dw = de + Tds = Pdv + dwm                                            (A4) 
   
where dwm is the mechanical work.  Then, Eq. A3 becomes 
 
df = -sdT + vdP - dwm                                                      (A5)  
 
For isothermal conditions (T = 0) 
 
df = vdP - dwm                                                                  (A6)  
 



 49

and for constant pressure, 
 
df = - dwm                                                                  (A7)  
 
which indicates that the decrease in the free energy of a 
system is equal to the work done by the system, excluding 
the work done during expansion against constant pressure 
(Edlefsen and Anderson 1943).  As soil becomes more 
unsaturated, the work done on the soil to remove the pore 
water causes the free energy to decrease.  Therefore, the free 
energy of the pore water will be less than zero, if the free 
energy of the pore water is taken as the zero reference level. 
   If the mechanical work is taken as zero, then Eq. A6 
becomes 
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For gases (where Pv = RT), 
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   Equation A9 can be used to determine the free energy 
of the soil water relative to that of free and pure water by 
comparing the vapor pressure of water in equilibrium with 
the soil to pure water. 
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where P is the vapor pressure of soil water, Po is the vapor 
pressure of free and pure water, and P/Po is the relative 
vapor pressure (or relative humidity) above the soil water 
surface. 
   The separate effects of a number of variables including 
temperature, pressure, concentration of solutes in pore water, 
and water content on the partial free energy of soil water can 
be investigated.  However, the measurement of P/Po 
provides direct results accounting for the effects of all the 
variables involved (Edlefsen and Anderson 1943).  When 
expressed with reference to a unit volume of water, Eq. A10 
assumes the units of pressure 
 

ow
t P

P
V
RT

h ln=                                                                (A11) 

 
where ht is the total suction (cm or pF) and Vw is the molar 
volume of water (m3/kmol). 
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APPENDIX B 
SOIL SUCTION MEASUREMENT WITH 
THE FILTER PAPER METHOD 
 
B.1 Calibration for the Suction Wetting Curve  

The calibration for the suction wetting curve for filter 
paper using salt solutions is based upon the thermodynamic 
relationship between total suction (or osmotic suction) and 
the relative humidity resulting from a specific concentration 
of a salt in distilled water.  The thermodynamic relationship 
between total suction and relative humidity is given in Eq. 
3.2 of Chapter 3.  In this study, NaCl was selected as an 
osmotic suction source for the filter paper calibration.  Salt 
concentrations from 0 (distilled water) to 2.7 molality were 
prepared and filter papers were simply placed above salt 
solutions (in a non-contact manner) in sealed containers.  
The calibration test configuration adopted for this research is 
shown in Fig. B1.   
 

 
The filter paper and salt solution setups in the sealed 

containers were put in a constant temperature environment 
for equilibrium.  Temperature fluctuations were kept as low 
as possible during a two week equilibration period.  A water 
bath was employed for this purpose, in which temperature 
fluctuations did not exceed ± 0.1oC. 

Before commencing the filter paper calibration 
experiments and the soil suction measurements, all the items 
related to filter paper testing were cleaned carefully.  Latex 
gloves and tweezers were used to handle the materials in 
nearly all steps of the experiment.  The filter papers and 
aluminum cans for water content measurements were never 
touched with bare hands because oily hands may cause the 
filter papers to absorb more water.  In addition, it is 
suggested that the filter paper water content measurements 
are performed by two persons in order to reduce the time 
during which the filter papers are exposed to the laboratory 

atmosphere and, thus, the amount of moisture lost or gained 
during measurements is kept to a minimum. 
 
B.1.1 Experimental Procedure for Wetting Curve 
Calibration 

The procedure that was adopted for the experiment is 
as follows: 
1. NaCl solutions were prepared from 0 (i.e., distilled 

water) to 2.7 molality (i.e., the number of moles of NaCl 
in mass in 1000 ml of distilled water). 

2. A 250 ml glass jar was filled with approximately 150 ml 
of a solution of known molality of NaCl.  Then, a small 
plastic cup was inserted into the glass jar to function as 
a support for filter papers.  Two filter papers were put 
on the plastic cup one on top of the other.  The glass jar 
lid was sealed tightly with plastic tapes to ensure air 
tightness.  The configuration of the setup is depicted in 
Fig. B1. 

3. Step 2 was repeated for each different NaCl 
concentration. 
The glass jars were inserted into large plastic 

containers and the containers were sealed with water proof 
tape.  Then, the containers were put into sealed plastic bags 
for extra protection.  After that, the containers were inserted 
into the water bath for an equilibration period.  After two 
weeks of equilibrating time, the procedure for the filter 
paper water content measurements was as follows: 
1. Before taking the plastic containers from the water bath, 

all aluminum cans were weighed to the nearest 0.0001 g 
accuracy and recorded on a filter paper water content 
measurement data sheet, similar to the one provided in 
ASTM D 5298. 

2. After that, all measurements were carried out by two 
persons.  For instance, while one person was opening 
the sealed glass jar, the other person was transferring the 
filter paper, using tweezers, into the aluminum can very 
quickly (i.e., in a few seconds, usually less than 5 
seconds).  The lid was placed on each aluminum can 
immediately. 

3. Then, the weights of each can with filter papers inside 
were very quickly measured to the nearest 0.0001 g. 

4. Steps 2 and 3 were followed for every glass jar.  Then, 
all the cans were put into the oven with the lids half-
open to allow evaporation.  All filter papers were kept at 
105 ± 5o C temperature for 24 hours inside the oven.  
This is the standard test method for soil water content 
measurements.  However, it is only necessary to keep 
the filter paper in the oven for at least 10 hours. 

5. Before taking measurements, the cans were closed with 
their lids and allowed to equilibrate in the oven for 
about 5 minutes.  Then, a can was removed from the 
oven and put on an aluminum block for about 20 
seconds to cool down; the aluminum block acted as a 
heat sink and expedited the cooling of the can.  This is 
to eliminate temperature fluctuations and air currents in 
the enclosed weighing scale.  After that, the can with 
dry filter paper inside was weighed to the nearest 0.0001 
g very quickly.  The dry filter paper was taken out of the 
can and the cooled can was also weighed very quickly. 

6. Step 5 was repeated for every can. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B1.  Total Suction Calibration Test Configuration. 
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B.1.2 Wetting Calibration Curve  
A wetting curve was constructed from the filter paper 

test results by following the procedure described above.  The 
curve obtained for Schleicher & Schuell No. 589-WH filter 
papers using sodium chloride salt solutions is depicted in 
Fig. B2.  Figure B2 clearly shows the sensitivity of total 
suction to very small changes in filter paper water content 
values when the relative humidity approaches 100%, as 
expected from the nature of Kelvin’s equation (i.e., total 
suction is equal to zero when relative humidity is 100 
percent, fully saturated condition).  From the figure, it is 
seen that total suction decreases dramatically when relative 
humidity approaches 100 percent. 
 
B.2 Calibration for the Suction Drying Curve  

Pressure plate and pressure membrane devices were 
employed in the drying filter paper calibration.  A schematic 
drawing of a pressure plate or pressure membrane apparatus 
is depicted in Fig. B3.  For the drying suction calibration of 
the filter paper, a contact path is provided between the filter 
paper and the measuring device so as to eliminate the 
osmotic suction component of total suction.  In other words, 
if transfer of the soil water is allowed only through fluid 
flow, dissolved salts will move with the soil water, and the 
measuring device will not detect the osmotic suction 
component. 

 
Pressure plate and pressure membrane devices operate 

by imposing a suction value (i.e., applied air pressure minus 
water pressure at atmospheric condition) on a given 
specimen which can be a soil or filter paper.  The filter paper 
is put into the suction measuring device in a manner that 
ensures good contact with the porous plate or cellulose 
membrane.  In this process, the main concern is to make sure 
that an intimate contact is provided between the water inside 
the filter paper and the water inside the porous disk so that 
transfer of the water is allowed only through continuous 
water films.  To investigate the degree of contact between 
the filter paper and porous disk, the testing procedure and 
setup as depicted in Fig. B3 were undertaken in this study.  
Three different soils (i.e., a fine clay, sandy silt, and pure 
sand) were used in the calibration process of filter papers in 

order to investigate the role of soils in establishing a good 
contact between the filter paper and porous disk. 

 

 
B.2.1 Experimental Procedure for Drying Curve 
Calibration 

The procedure that was adopted for the experiment is 
as follows: 
1. Prior to each test, the porous disk or membrane and the 

soils were saturated with distilled water at least one day 
in advance, so that all the pores were fully saturated 
with water. 

2. The testing configuration as in Fig. B3 was established 
using one of the soils (i.e., fine clay or sandy silt or pure 
sand).  Figure B3 explains how the filter papers, soil, 
and protective papers were arranged in the experiment.  
The soil specimens with the filter papers were placed on 
the saturated disks and the level of distilled water on the 
plate was raised enough to cover all of the filter papers.  
All of the air bubbles were eliminated during placement 
of the filter paper, soil, and protective paper 
arrangement on the ceramic disk by carefully pressing 
the bubbles out to the edges of each. 

3. After the pressure chamber was tightened, with the 
influence of the applied air pressure the water inside the 
soil specimen and filter papers were forced out through 
the porous plate or membrane and collected in a 
graduated cylinder until a suction equilibrium between 
the soil and filter papers and the applied air pressure 
was established. 
An equilibration period between 3 and 5 days is 

commonly suggested for matric suction measurements using 
pressure plates and membranes (ASTM D 5298; Houston et 
al. 1994; Lee 1991). The equilibrating periods used for this 
study varied between 3, 5, and 7 days depending on the 
testing set up.  For instance, when filter papers were 
embedded in the soil, equilibrating periods were 7 days for 
the fine clay and 5 days for the sandy silt set up, but the 
equilibrating period was 3 days when filter papers embedded 
in the pure sand or when only filter papers were used.  
However, all the three soils were also tested with filter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B2.  Filter Paper Wetting Calibration Curve. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B3.  Schematic Drawing of a Pressure Plate Device. 
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papers inside in the same pressure chamber to check the 
differences between the filter paper water contents.  To 
obtain the filter paper water contents, the same procedure 
described in the Wetting Curve Calibration Procedure was 
followed. 
 
B.2.2 Drying Calibration Curve  

A drying curve was established from the filter paper 
test results by following the procedure described above.  The 
curve obtained for Schleicher & Schuell No. 589-WH filter 
papers using both pressure plate and pressure membrane 
devices is depicted in Fig. B4.  Each data point on Fig. B4 is 
an average of at least three tests and each test data is an 
average of at least four filter papers.  The standard errors for 
the straight line and curved portions of the drying curve are 
0.135 and 0.116 log kPa units, respectively.  The standard 
error for the straight line portion of the wetting curve is 
0.044 log kPa.  With the pressure membrane the highest 
matric suction obtained was 4,570 kPa and suctions below 
150 kPa were obtained using the pressure plate apparatus.  
The corresponding wetting calibration curve is also shown in 
Fig. B4.  It plots below the drying suction curve, as is 
expected of the hysteresis process. 

Very high filter paper water contents were obtained 
when all the three soils were used as in the set up (a) as 
shown in Fig. B3.  However, the filter paper water contents 
were all comparable as obtained from the set ups (b), (c), 
and (d) as in Fig. B3.  The results from (b) were slightly 
wetter than (c) and the results from (d) were slightly drier 
than (c).  In obtaining the calibration curve, the filter papers 
from the set up arrangements (b), (c), and (d) were used. 
 

 
B.3 Soil Total Suction Measurements  

Glass jars that are between 250 to 500 ml volume size 
are readily available in the market and can be easily adopted 
for suction measurements.  Glass jars, especially, with 3.5 to 
4 inch (8.89 to 10.16 cm) diameter can contain the 3 inch 
(7.62 cm) diameter Shelby tube samples very nicely.  A 
testing procedure for total suction measurements using filter 
papers can be outlined as follows:  
 
 
B.3.1 Experimental Procedure 

 
1. At least 75 percent by volume of a glass jar is filled up 

with the soil; the smaller the empty space remaining in 
the glass jar, the smaller the time period that the filter 
paper and the soil system requires to come to 
equilibrium. 

2. A ring type support, which has a diameter smaller than 
filter paper diameter and about 1 to 2 cm in height, is 
put on top of the soil to provide a non-contact system 
between the filter paper and the soil.  Care must be 
taken when selecting the support material; materials that 
can corrode should be avoided, plastic or glass type 
materials are much better for this job. 

3. Two filter papers one on top of the other are inserted on 
the ring using tweezers.  The filter papers should not 
touch the soil, the inside wall of the jar, and underneath 
the lid in any way. 

4. Then, the glass jar lid is sealed very tightly with plastic 
tape. 

5. Steps 1, 2, 3, and 4 are repeated for every soil sample. 
6. After that, the glass jars are put into the ice-chests in a 

controlled temperature room for equilibrium. 
Researchers suggest a minimum equilibrating period of 

one week (ASTM D5298; Houston et al. 1994; Lee 1991).  
After the equilibration time, the procedure for the filter 
paper water content measurements can be as follows: 
1. Before removing the glass jar containers from the 

temperature room, all aluminum cans that are used for 
moisture content measurements are weighed to the 
nearest 0.0001 g accuracy and recorded. 

2. After that, all measurements are carried out by two 
persons.  For example, while one person is opening the 
sealed glass jar, the other is putting the filter paper into 
the aluminum can very quickly (i.e., in a few seconds) 
using tweezers. 

3. Then, the weights of each can with wet filter paper 
inside are taken very quickly. 

4. Steps 2 and 3 are followed for every glass jar.  Then, all 
cans are put into the oven with the lids half-open to 
allow evaporation.  All filter papers are kept at 105 ± 
5oC temperature inside the oven for at least 10 hours. 

5. Before taking measurements on the dried filter papers, 
the cans are closed with their lids and allowed to 
equilibrate for about 5 minutes.  Then, a can is removed 
from the oven and put on an aluminum block (i.e., heat 
sinker) for about 20 seconds to cool down; the 
aluminum block functions as a heat sink and expedites 
the cooling of the can.  After that, the can with the dry 
filter paper inside is weighed very quickly.  The dry 
filter paper is taken from the can and the cooled can is 
weighed again in a few seconds. 

6. Step 5 is repeated for every can. 
After obtaining all of the filter paper water contents an 

appropriate calibration curve, such as the one in Fig. B4, is 
employed to get total suction values of the soil samples. 
 
B.4 Soil Matric Suction Measurements  

Soil matric suction measurements are similar to the 
total suction measurements except instead of inserting filter 
papers in a non-contact manner with the soil for total suction 
testing, a good intimate contact should be provided between 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B4.  Drying and Wetting Calibration Curves. 
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the filter paper and the soil for matric suction measurements.  
Both matric and total suction measurements can be 
performed on the same soil sample in a glass jar as shown in 
Fig. B5.   A testing procedure for matric suction 
measurements using filter papers can be outlined as follows:  
 
B.4.1 Experimental Procedure 
 
1. A filter paper is sandwiched between two larger size 

protective filter papers.  The filter papers used in suction 
measurements are 5.5 cm in diameter, so either a filter 
paper is cut to a smaller diameter and sandwiched 
between two 5.5 cm papers or bigger diameter (bigger 
than 5.5 cm) filter papers are used as protectives. 

2. Then, these sandwiched filter papers are inserted into 
the soil sample in a very good contact manner (i.e., as in 
Fig. B5).  An intimate contact between the filter paper 
and the soil is very important. 

3. After that, the soil sample with embedded filter papers 
is put into the glass jar container.  The glass container is 
sealed up very tightly with plastic tape. 

4. Steps 1, 2, and 3 are repeated for every soil sample. 
5. The prepared containers are put into ice-chests in a 

controlled temperature room for equilibrium. 
Researchers suggest an equilibration period of 3 to 5 

days for matric suction testing (ASTM D 5298; Houston et 
al. 1994; Lee 1991).  However, if both matric and total 
suction measurements are performed on the same sample in 
the glass jar, then the final equilibrating time will be at least 
7 days of total suction equilibrating period.  The procedure 
for the filter paper water content measurements at the end of 
the equilibration is exactly same as the one outlined for the 
total suction water content measurements.  After obtaining 
all the filter paper water contents the appropriate calibration 
curve may be employed to get the matric suction values of 
the soil samples.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B5.  Total and Matric Suction Measurements. 
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APPENDIX C 
PROGRAM RSLABN INPUT DATA FORMAT 
 
C.1 Input Data 
   All the variables described below, except TITLE, are in 
accordance with the FORTRAN language integer and real 
number specifications.  In other words, all the variables 
starting with I, J, K, L, M, and N are integer numbers and all 
others are real numbers.  The input data to the program can 
be outlined as follows: 

• Data Card 1: 
TITLE 

• Data Card 2: 
KASE, NORTP, NPRINT, NEM, NNM 

• Data Card 3: SKIP the card if KASE ≠ 1. 
MAXIT, MULT 

• Data Card 4: SKIP the card if KASE ≠ 2. 
MAXIT 

• Data Card 5:  
MATLAB 
(If MATLAB = 0, go to the card # 7) 

• Data Card 6: If MATLAB ≠ 0. 
NCOLN, NROWN 
MATNNX(I) (I=1, NCOLN) 
MATNNY(I) (I=1, NROWN) 
MATENX(I) (I=1, NCOLE) 
MATENY(I) (I=1, NROWE) 

• Data Card 7: 
DO I=1, K1 

M, GLXY(M,1), GLXY(M,2) 
ENDDO 

• Data Card 8: 
DO I=1, K2 

N, (NOD(N,I), I=1,NPE) 
ENDDO 

• Data Card 9:  
NBEAMS 

• Data Card 10: SKIP the card if NBEAMS = 0. 
DO I=1, NBEAMS 

MFIRST, MLAST, INCR, THK 
ENDDO 

• Data Card 11: 
NLOADS 

• Data Card 12: SKIP the card if NLOADS = 0. 
DO I=1, NLOADS 

LFIRST, LLAST, LINC, PLODS 
ENDDO 

• Data Card 13: 
NTEL 

• Data Card 14: SKIP the card if NTEL = 0. 
DO I=1, NTEL 

NT, UPRES(NT) 
ENDDO 
 
 

 
 
 
 
 
 
 
 
 

• Data Card 15: SKIP the card if KASE ≠ 1. 
MDISP 
MLINE(I) (I=1, MDISP) 
VEXP(I) (I=1, MDISP) 

DO I=1, MLINE(I) 
MFIRST, MLAST, MINC 

ENDDO 
NINLDS 
(If NINLDS = 0, go to the Card # 16) 
  DO I=1, NINLDS 
L, VIDS(L) 
  ENDDO 

• Data Card 16: SKIP the card if KASE ≠ 2. 
NDISP 
NLINE(I) (I=1, NDISP) 
VSHR(I) (I=1, NDISP) 

DO I=1, NLINE(I) 
NFIRST, NLAST, NINC 

ENDDO 
MINLDS 
(If MINLDS = 0, go to the Card # 17) 
  DO I=1, MINLDS 
K, VIDS(K) 
  ENDDO 

• Data Card 17: SKIP the card if NORTP ≠ 1. 
E1, E2, ANU12, G12, G13, G23 

• Data Card 18: SKIP the card if NORTP = 1. 
E, ANU 

• Data Card 19: 
YMS, PRS 

• Data Card 20: 
KCOHES 

• Data Card 21: SKIP the card if KCOHES = 0. 
COHESN 

• Data Card 22: 
UWRC, DSLOAD, STHIK 

 
   The input variables to the program, as explained above 
in a systematic order, have the following meanings: 
   TITLE: Title of the problem being solved (maximum 
80 characters). 
   KASE: An indicator for the type of the problem being 
analyzed.  KASE = 0 – Compressible soil, KASE = 1 – 
Swelling soil (Edge Lift Case), and KASE = 2 – Shrinking 
soil (Center Lift Case).  
   NORTP: An indicator for the orthotropic plate analyzes 
option.  NORTP = 1 – Orthotropic plate analysis and 
NORTP ≠ 1 – Isotropic plate analysis. 
   NPRINT: An indicator for printing certain output.  
NPRINT = 0 –  Not to print the element matrices and vectors, 
first element dimension, soil element flexibility and stiffness 
matrices, total element stiffness matrix, global matrices, 
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boundary condition information, number of integration 
points.  NPRINT = 1 – Not to print the information in the 
NPRINT = 0 case except the soil element flexibility and 
stiffness matrices and total element stiffness matrix.  The 
NPRINT = 0 or 1 will, however, print the basic solution 
output such as the element coordinates, material properties, 
displacement and stress results. 
   NEM: Number of the elements in the mesh. 
   NNM: Number of nodes in the mesh. 
   MAXIT: Maximum number of iterations allowed for 
the convergence in both KASE = 1 and 2. 
   MULT: A multiplication factor to increase the density 
of reinforced concrete at the beginning of the iterations to 
establish a smooth convergence for KASE = 1 problems.  
The increased density will reduce to its real value at the end 
of convergence.  If a zero value is assigned to MULT (i.e., 
MULT = 0), then this option will be skipped. 
   MATLAB: This is an indicator to obtain such output 
files that are suitable for postprocessing using the 
commercially available MATLAB software.  To assign a 
zero value to MATLAB will eliminate this option. 
   NCOLN: Number of columns of nodes in the finite 
element mesh (see Fig. C1). 
   NROWN: Number of rows of nodes in the finite 
element mesh. 
   MATNNX(I) (I=1, NCOLN): The array which stores 
the nodal numbers along a row in the x-direction. 
   MATNNY(I) (I=1, NROWN): The array which stores 
the nodal numbers along a column in the y-direction. 
   NCOLE = NCOLN – 1 
   NROWE = NROWN – 1 
   MATENX(I) (I=1, NCOLE): The array which stores 
the element numbers along a row in the x-direction. 
   MATENY(I) (I=1, NROWE): The array which stores 
the element numbers along a column in the y-direction. 
   GLXY(M,1): The global x-coordinate of the node M. 
   GLXY(M,2): The global y-coordinate of the node M.  
If the distances between the nodes along a straight line are 
equal and the nodes are consecutively numb ered in an 
increasing order, then the coordinates of the middle nodes 
can automatically be generated just by entering the 
coordinates for the first and the last node on that line. 
   NOD(N,I) (I=1,NPE): The element connectivity for the 
Nth element.  NPE is  the number of nodes per element, 
which is always 4 (NPE = 4) in this program.  The element 
connectivity information should be provided in a counter-
clockwise direction starting from the lower left corner node 
for each element.  It is suggested that the nodes and elements 
on a mesh be numbered as shown in Fig. C1.  If the elements 
are consecutively numbered in an increasing order on a 
straight line, then the element connectivity arrays of the 
middle elements can automatically be generated just by 
entering the element connectivity information for the first 
and the last element on that line. 
   NBEAMS: Number of stiffening beams both in x- and 
y-directions on different uniformly numbered elements.  In 
other words, although only one beam lies on the elements 1, 
5, 9, 13, 23, 33, and 43 (Fig. C1), it is considered as two 
beams for the input data so that a systematic creation of the 
inter-elements can be achived.  For instance, for the beam 
mentioned above, the increment between the elements 1, 5, 

9, and 13 is the same which is 4, and the increment between 
the elements 13, 23, 33, and 43 is the same which is 10.  
Therefore, when assigned such a beam it is necessary to 
input the first element number, the last element number, and 
the increment between the elements.  Then, one should 
provide the following information for the mentioned beam 
as follows: 
        1, 13, 4 
        13, 43, 10 
 
on two different lines.   
 

 
   MFIRST: The first element number for the beam 
information. 
   MLAST: The last element number for the beam 
information. 
   INCR: The increment between the elements on the 
same line. 
   THK: Thickness of the beam (without considering the 
thickness of the slab). 
   NLOADS: Number of uniformly distributed pressures 
both in x- and y-directions on different uniformly numbered 
elements lie on a straight line (line-elements).  The 
numbering system of the elements on which the pressures 
are applied is exactly the same as in the case for the beams 
as described in NBEAMS section above. 
   LFIRST: The first element number on which the 
pressure is applied. 
   LLAST: The last element number on which the 
pressure is applied. 
   LINC: The increment between the elements on the 
same line. 
   PLODS: The amount of the pressure being applied. 
   NTEL: The total number of individual pressures being 
applied on different individual elements. 
   UPRES(NT): The amount of pressure being applied on 
element number NT. 
   MDISP: Number of different displacements (ym values 
from VOLFLO) for the edge lift case (KASE = 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. C1  A Typical Finite Element Mesh. 
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   MLINE(I) (I=1, MDISP): Number of lines, which 
connect the nodal points, having the same displacement 
values and the same increment values.  For instance, the line 
that connects the nodal points 1, 6, 11, 16, 27, 38, 49, and 60 
(Fig. C1) is considered to be two lines of having different 
increments.  This part has the same logic of automatic 
creation of the nodal points or element numbers as 
mentioned under sections NBEAMS and NLOADS. For the 
line mentioned above, the increment between the nodal 
points 1, 6, 11, and 16 is the same and is 5, and the 
increment between the points 16, 27, 38, and 49 is the same 
and is 11.  Therefore, when such a line is assigned it is only 
necessary to input the first nodal number, the last nodal 
number, and the increment between the points.  Then, one 
should provide the following information for the line as 
follows: 
        1, 16, 5 
        16, 49, 11 
 
   VEXP(I) (I=1, MDISP):  The vertical displacement 
value, which is a positive number, corresponding to the Ith 
line created in section MLINE.   
   MFIRST: The first nodal point corresponding to the Ith 
line of section MLINE. 
   MLAST: The last nodal point corresponding to the Ith 
line of section MLINE. 
   MINC: The increment between two consecutive nodal 
points corresponding to the Ith line of section MLINE.  
   NINLDS: Total number of nodal points considered for 
individual displacement locations (nodal points).  This is to 
input displacements, as obtained from VOLFLO, at some 
particular nodal points within em (edge moisture variation 
distance) distance. 
   VIDS(I): The vertical displacement value (KASE = 1) 
at Ith node.  It is a positive number.  
    NDISP: Number of different displacements (ym values 
from VOLFLO) for the center lift case (KASE = 2). 
   NLINE(I) (I=1, NDISP): Number of lines, which 
connect the nodal points, having the same displacement 
values and the same increment values.  For instance, the line 
that connects the nodal points 1, 6, 11, 16, 27, 38, 49, and 60 
(Fig. C1) is considered to be two lines of having different 
increments.  This part has the same logic of automatic 
creation of the nodal displacement values of section MLINE. 
For the line mentioned above, the increment between the 
nodal points 1, 6, 11, and 16 is the same and is 5, and the 
increment between the points 16, 27, 38, and 49 is the same 
and is 11.  Therefore, when such a line is assigned it is only 
necessary to input the first nodal number, the last nodal 
number, and the increment between the points.  Then, one 
should provide the following information for the line as 
follows: 
        1, 16, 5 
        16, 49, 11 
   VSHR(I) (I=1, NDISP):  The vertical displacement 
value, which is a positive number, corresponding to the Ith 
line created in section NLINE.   
   NFIRST: The first nodal point corresponding to the Ith 
line of section NLINE. 
   NLAST: The last nodal point corresponding to the Ith 
line of section NLINE. 

   NINC: The increment between two consecutive nodal 
points corresponding to the Ith line of section NLINE.  
   MINLDS: Total number of nodal points considered for 
individual displacement locations (nodal points).  This is to 
input displacements, as obtained from VOLFLO, at some 
particular nodal points within em (edge moisture variation 
distance) distance. 
   VIDS(I): The vertical displacement value (KASE = 2) 
at Ith node.  It is a positive number.  
    E1: Young’s moduli of the reinforced concrete slab in 
the global x-direction (orthotropic plate analysis). 
   E2: Young’s moduli of the reinforced concrete slab in 
the global y-direction (orthotropic plate analysis). 
   ANU12:  Poisson’s ratio for the reinforced concrete in 
the x-y plane (orthotropic plate analysis). 
   G12: Shear modulus for the reinforced concrete slab in 
x-y plane (orthotropic plate analysis). 
   G13: Shear modulus for the reinforced concrete slab in 
x-z plane (orthotropic plate analysis). 
   G23: Shear modulus for the reinforced concrete slab in 
y-z plane (orthotropic plate analysis). 
   E: Elastic modulus for the isotropic reinforced concrete 
slab. 
   ANU: Poisson’s ratio for the isotropic reinforced 
concrete slab. 
   YMS: Elastic modulus for the foundation soil. 
   PRS: Poisson’s ratio for the foundation soil. 
   KCOHES: An indicator for computing the downdrag 
force applied on the faces of the stiffening beams by the 
cohesive soil.  KCOHES ≠ 0 indicates the option for 
considering the pressure applied on the beams by the soil. 
   COHES: Cohesive shear strength of the soil. 
   UWRC: Unit weight of the reinforced concrete slab. 
   DSLOAD: Uniformly distributed load all over the slab. 
   STHIK: Thickness of the slab. 
 
C.2 Input File 
An example problem, Center Lift Case.            
  TITLE 
 2, 0, 0, 52, 70      KASE, NORTP, NPRINT, NEM, NNM  
10 MAXIT  
1 MATLAB 
11, 8               NCOLN, NROWN 
16,17,18,19,20,21,22,23,24,25,26        MATNNX(I) (I=1, NCOLN) 
1,6,11,16,27,38,49,60                         MATNNY(I) (I=1, NROWN) 
13,14,15,16,17,18,19,20,21,22    MATENX(I) (I=1, NCOLE) 
1,5,9,13,23,33,43           MATENY(I) (I=1, NROWE) 
1,   0.0,   0.0         M, GLXY(M,1), GLXY(M,2) 
5,   4.0,   0.0 
6,   0.0,  1.0 
10, 4.0,  1.0 
11, 0.0,  2.0 
15, 4.0,  2.0 
16, 0.0,  3.0 
26,  10.0,  3.0 
27,    0.0,  4.0 
37,  10.0,  4.0 
38,    0.0,  5.0 
48,  10.0,  5.0 
49,    0.0,  6.0 
59,  10.0,  6.0 
60,   0.0,   7.0 
70,  10.0,  7.0 
1,     1,   2,   7,   6      N, (NOD(N,I), I=1,4) 
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4,     4,   5, 10,   9 
5,     6,   7, 12, 11 
8,     9, 10, 15, 14 
9,   11, 12, 17, 16 
12, 14, 15, 20, 19 
13, 16, 17, 28, 27 
22, 25, 26, 37, 36 
23, 27, 28, 39, 38 
32, 36, 37, 48, 47 
33, 38, 39, 50, 49 
42, 47, 48, 59, 58 
43, 49, 50, 61, 60 
52, 58, 59, 70, 69 
7                    NBEAMS 
1,    4,    1,  0.5          MFIRST, MLAST, INCR, THK 
16, 22,   1, 0.5 
43, 52,   1, 0.5 
1,     9,   4, 0.5 
13, 33, 10, 0.5 
4,   12,   4, 0.5 
32, 42, 10, 0.5 
7 NLOADS 
1,    4,    1,  100.0        LFIRST, LLAST, LINC, PLOADS 
16, 22,   1,  100.0 
43, 52,   1,  100.0 
1,     9,   4,  100.0 
13, 33, 10,  100.0 
4,   12,   4,  100.0 
32, 42, 10,  100.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
4 NTEL 
6,   50.0               NT, UPRES(NT) 
34, 75.0 
41, 85.0 
27, 100.0 
2 NDISP 
7    3               NLINE(I) (I=1,NDISP) 
0.15   0.10           VSHR(I)  (I=1,NDISP) 
1,     5,  1            NFIRST, NLAST, NINC 
20, 16,  1 
60, 70,  1 
1,   16,  5 
27, 49, 11 
10, 15,  5 
37, 59, 11 
7,   17,  5 
28, 50, 11 
51, 58,  1 
1 MINLDS 
30,  0.12               K, VIDS(K) 
2.16E8,  0.25            E, ANU 
1.44E5,  0.40            YMS, PRS 
0 KCOHES 
150.0,  25.0,  0.20        UWRC, DSLOAD, STHIK 
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APPENDIX D 
EXAMPLE ONE DISPLACEMENT AND STRESS PLOTS 
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             a. Top View                              b. Isometric View 
 

Fig. D1.  Example One Center Lift Case, Ribbed Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D2.  Example One Center Lift Case, Flat Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D3.  Example One Center Lift Case, Ribbed Slab, Moment in x-Direction. 



 60

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D4.  Example One Center Lift Case, Flat Slab, Moment in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D5.  Example One Center Lift Case, Ribbed Slab, Moment in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D6.  Example One Center Lift Case, Flat Slab, Moment in y-Direction. 



 61

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D7.  Example One Center Lift Case, Ribbed Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D8.  Example One Center Lift Case, Flat Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D9.  Example One Center Lift Case, Ribbed Slab, Shear in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. D10.  Example One Center Lift Case, Flat Slab, Shear in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D11.  Example One Center Lift Case, Ribbed Slab, Shear in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D12.  Example One Center Lift Case, Flat Slab, Shear in y-Direction. 



 63

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D13.  Example One Edge Lift Case, Ribbed Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D14.  Example One Edge Lift Case, Flat Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D15.  Example One Edge Lift Case, Ribbed Slab, Moment in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. D16.  Example One Edge Lift Case, Flat Slab, Moment in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D17.  Example One Edge Lift Case, Ribbed Slab, Moment in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D18.  Example One Edge Lift Case, Flat Slab, Moment in y-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. D19.  Example One Edge Lift Case, Ribbed Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D20.  Example One Edge Lift Case, Flat Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D21.  Example One Edge Lift Case, Ribbed Slab, Shear in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. D22.  Example One Edge Lift Case, Flat Slab, Shear in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. D23.  Example One Edge Lift Case, Ribbed Slab, Shear in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 

Fig. D24.  Example One Edge Lift Case, Flat Slab, Shear in y-Direction. 
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APPENDIX E 
EXAMPLE TWO DISPLACEMENT AND STRESS PLOTS  
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             a. Top View                              b. Isometric View 
 

Fig. E1.  Example Two Center Lift Case, Ribbed Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E2.  Example Two Center Lift Case, Flat Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E3.  Example Two Center Lift Case, Ribbed Slab, Moment in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. E4.  Example Two Center Lift Case, Flat Slab, Moment in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E5.  Example Two Center Lift Case, Ribbed Slab, Moment in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E6.  Example Two Center Lift Case, Flat Slab, Moment in y-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. E7.  Example Two Center Lift Case, Ribbed Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E8.  Example Two Center Lift Case, Flat Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E9.  Example Two Center Lift Case, Ribbed Slab, Shear in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. E10.  Example Two Center Lift Case, Flat Slab, Shear in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E11.  Example Two Center Lift Case, Ribbed Slab, Shear in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E12.  Example Two Center Lift Case, Flat Slab, Shear in y-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. E13.  Example Two Edge Lift Case, Ribbed Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E14.  Example Two Edge Lift Case, Flat Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E15.  Example Two Edge Lift Case, Ribbed Slab, Moment in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. E16.  Example Two Edge Lift Case, Flat Slab, Moment in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E17.  Example Two Edge Lift Case, Ribbed Slab, Moment in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E18.  Example Two Edge Lift Case, Flat Slab, Moment in y-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. E19.  Example Two Edge Lift Case, Ribbed Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E20.  Example Two Edge Lift Case, Flat Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E21.  Example Two Edge Lift Case, Ribbed Slab, Shear in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. E22.  Example Two Edge Lift Case, Flat Slab, Shear in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E23.  Example Two Edge Lift Case, Ribbed Slab, Shear in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. E24.  Example Two Edge Lift Case, Flat Slab, Shear in y-Direction. 
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APPENDIX F 
EXAMPLE THREE DISPLACEMENT AND STRESS PLOTS  
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             a. Top View                              b. Isometric View 
 

Fig. F1.  Example Three Compressible Soil, Ribbed Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. F2.  Example Three Compressible Soil, Flat Slab, Displacements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. F3.  Example Three Compressible Soil, Ribbed Slab, Moment in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. F4.  Example Three Compressible Soil, Flat Slab, Moment in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. F5.  Example Three Compressible Soil, Ribbed Slab, Moment in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. F6.  Example Three Compressible Soil, Flat Slab, Moment in y-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. F7.  Example Three Compressible Soil, Ribbed Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. F8.  Example Three Compressible Soil, Flat Slab, Twisting Moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. F9.  Example Three Compressible Soil, Ribbed Slab, Shear in x-Direction. 
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             a. Top View                              b. Isometric View 
 

Fig. F10.  Example Three Compressible Soil, Flat Slab, Shear in x-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. F11.  Example Three Compressible Soil, Ribbed Slab, Shear in y-Direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             a. Top View                              b. Isometric View 
 

Fig. F12.  Example Three Compressible Soil, Flat Slab, Shear in y-Direction. 
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APPENDIX G 
A TYPICAL OUTPUT FROM RSLABN PROGRAM 
 
 
 
KASE 2, Center Lift, Example A.6 from PTI Manual     
  ______________________________________________________________________ 
            OUTPUT  FROM  PROGRAM RSLABN 
  ______________________________________________________________________ 
                A  SLAB-ON-GRADE  PROBLEM  IS  ANALYZED 
                 (USING THE SHEAR DEFORMATION THEORY) 
 
     MATERIAL PROPERTIES OF THE SLAB ANALYZED: 
        Modulus of elasticity, E1 ...............=  0.2160E+09 
        Modulus of elasticity, E2 ...............=  0.2160E+09 
        Poissons ratio, ANU12 ...................=  0.2500E+00 
        Shear modulus, G12 ......................=  0.8640E+08 
        Shear modulus, G13 ......................=  0.8640E+08 
        Shear modulus, G23 ......................=  0.8640E+08 
 
     MATERIAL PROPERTIES OF THE FOUNDATION SOIL: 
        Modulus of Elasticity, YMS ..............=  0.1440E+06 
        Poissons ratio, PRS .....................=  0.4000E+00 
 
     SLAB WEIGHT, THICKNESS, AND LOAD: 
        Unit weight of reinforced concrete, UWRC.=  0.1500E+03 
        Uniform slab thickness, STHIC ...........=  0.4000E+02 
        Uniform distributed load, DSLOAD ........=  0.3300E+00 
 
        *** A General Domain Mesh Consisting of *** 
          *** Rectangular Elements is Used *** 
 
     FINITE ELEMENT MESH INFORMATION: 
        Number of nodes per element, NPE ........=   4 
        No. of primary deg. of freedom/node, NDF =   3 
        Number of elements in the mesh, NEM .....= 246 
        Number of nodes in the mesh, NNM ........= 282 
        Number of equations to be solved, NEQ ...= 846 
        Half bandwidth of the matrix GLK, NHBW ..=  60 
  ______________________________________________________________________ 
     Kase 2 Iteration Data: 
        Iteration No., KTW ........................ =   1 
        Number of zero coefficients at                
        current iteration, KTWO ................... = 384 
        Number of zero coefficients at                
        previous iteration, KTWOP ................. =   0 
 
     Kase 2 Iteration Data: 
        Iteration No., KTW ........................ =   2 
        Number of zero coefficients at                
        current iteration, KTWO ................... = 212 
        Number of zero coefficients at                
        previous iteration, KTWOP ................. = 384 
 
     Kase 2 Iteration Data: 
        Iteration No., KTW ........................ =   3 
        Number of zero coefficients at                
        current iteration, KTWO ................... = 208 
        Number of zero coefficients at                
        previous iteration, KTWOP ................. = 212 
 
     Kase 2 Iteration Data: 
        Iteration No., KTW ........................ =   4 
        Number of zero coefficients at                
        current iteration, KTWO ................... = 208 
        Number of zero coefficients at                
        previous iteration, KTWOP ................. = 208 
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     S O L U T I O N : 
 
     Node    x-coord.      y-coord.     deflec. w    x-rotation    y-rotation 
 
       1   0.00000E+00   0.00000E+00   0.28975E+00   0.16769E-02   0.84267E-02 
       2   0.83300E+00   0.00000E+00   0.28782E+00   0.19669E-02   0.85515E-02 
       3   0.36998E+01   0.00000E+00   0.28624E+00   0.20200E-02   0.13000E-01 
       4   0.65666E+01   0.00000E+00   0.28482E+00   0.11826E-02   0.17648E-01 
       5   0.94334E+01   0.00000E+00   0.28453E+00   0.36900E-04   0.18716E-01 
       6   0.12300E+02   0.00000E+00   0.28299E+00  -0.79860E-03   0.16063E-01 
       7   0.15167E+02   0.00000E+00   0.28342E+00  -0.85972E-03   0.12902E-01 
       8   0.16000E+02   0.00000E+00   0.28334E+00  -0.66263E-03   0.12768E-01 
       9   0.00000E+00   0.83300E+00   0.28202E+00   0.14816E-02   0.86761E-02 
      10   0.83300E+00   0.83300E+00   0.28130E+00   0.13312E-02   0.84339E-02 
      11   0.36998E+01   0.83300E+00   0.27482E+00   0.50555E-03   0.13076E-01 
      12   0.65666E+01   0.83300E+00   0.27066E+00   0.29319E-03   0.17688E-01 
      13   0.94334E+01   0.83300E+00   0.26835E+00   0.31942E-03   0.18757E-01 
      14   0.12300E+02   0.83300E+00   0.27016E+00   0.20460E-03   0.16121E-01 
      15   0.15167E+02   0.83300E+00   0.27213E+00  -0.38346E-03   0.12822E-01 
      16   0.16000E+02   0.83300E+00   0.27316E+00  -0.48746E-03   0.12930E-01 
      17   0.00000E+00   0.30664E+01   0.26500E+00   0.40518E-02   0.87414E-02 
      18   0.83300E+00   0.30664E+01   0.26107E+00   0.41629E-02   0.75173E-02 
      19   0.36998E+01   0.30664E+01   0.24442E+00   0.92996E-02   0.15665E-01 
      20   0.65666E+01   0.30664E+01   0.22773E+00   0.38883E-02   0.19451E-01 
      (output suppressed) 
  _____________________________________________________________________________ 
     Node No.  x-ccord.   y-coord.   MAX/MIN Deflec. 
         1       0.00       0.00      0.2897E+00 
       183      19.04      24.42      0.8774E-01 
  __________________________________________________________________________________________ 
     F O R C E   R E S U L T S: 
  __________________________________________________________________________________________ 
     x-coord.     y-coord.       Mx           My          Mxy        Qx           Qy 
  __________________________________________________________________________________________ 
 
   0.4165E+00   0.4165E+00   0.1591E+05   0.1537E+05  -0.3279E+05     0.4152E+04  -0.4603E+04 
   0.2266E+01   0.4165E+00  -0.2165E+05  -0.9000E+04   0.1699E+05     0.7320E+04  -0.3759E+03 
   0.5133E+01   0.4165E+00  -0.2545E+05   0.3670E+04   0.9910E+04     0.3642E+04   0.1207E+03 
   0.8000E+01   0.4165E+00  -0.2810E+05   0.4783E+02   0.4806E+03     0.9179E+03  -0.6532E+03 
   0.1087E+02   0.4165E+00  -0.2315E+05   0.2867E+04  -0.8686E+04    -0.1867E+04   0.1385E+03 
   0.1373E+02   0.4165E+00  -0.1789E+05  -0.6350E+04  -0.1375E+05    -0.6038E+04  -0.2507E+03 
   0.1558E+02   0.4165E+00   0.1047E+05   0.9680E+04   0.2164E+05    -0.3727E+04  -0.4177E+04 
   0.4165E+00   0.1950E+01  -0.1095E+05  -0.3018E+05   0.1897E+05    -0.4204E+04   0.4675E+03 
   0.2266E+01   0.1950E+01   0.5834E+03   0.3880E+03   0.1251E+04    -0.4958E+04  -0.3838E+04 
 
   (output suppressed) 
  __________________________________________________________________ 
     Elem. No.   x-coord.  y-coord.   Max.(+)/Min.(+) Moment (Mx) 
         1       0.42       0.42      0.1591E+05 
        89      30.52      16.06      0.3257E+01 
     Elem. No.   x-coord.  y-coord.   Max.(-)/Min.(-) Moment (Mx) 
       158      33.56      24.00     -0.1265E+06 
       186      17.52      28.45     -0.4327E+01 
     Elem. No.   x-coord.  y-coord.   Max.(+)/Min.(+) Moment (My) 
       246      41.58      35.58      0.1587E+05 
       216       8.00      33.82      0.9741E+01 
     Elem. No.   x-coord.  y-coord.   Max.(-)/Min.(-) Moment (My) 
       173      28.58      25.76     -0.1630E+06 
       177      39.65      25.76     -0.5493E+00 
     Elem. No.   x-ccord.  y-coord.   Max.(+)/Min.(+) Moment (Mxy) 
       230       0.42      35.58      0.2727E+05 
       199       8.00      31.14      0.3026E+01 
     Elem. No.   x-ccord.  y-coord.   Max.(-)/Min.(-) Moment (Mxy) 
         1       0.42       0.42     -0.3279E+05 
       209      33.56      31.14     -0.1072E+02 
     Elem. No.   x-coord.  y-coord.   Max.(+)/Min.(+) Shear (Qx) 
       160      39.65      24.00      0.2224E+05 
       102      20.56      18.21      0.2165E+01 
     Elem. No.   x-coord.  y-coord.   Max.(-)/Min.(-) Shear (Qx) 
       146       2.27      24.00     -0.1959E+05 
       165       8.00      25.76     -0.2880E+01 
     Elem. No.   x-coord.  y-coord.   Max.(+)/Min.(+) Shear (Qy) 
       224      28.58      33.82      0.2441E+05 
        70      26.65      13.91      0.3127E+01 
     Elem. No.   x-coord.  y-coord.   Max.(-)/Min.(-) Shear (Qy) 
        71      28.58      13.91     -0.2307E+05 
       160      39.65      24.00     -0.3946E+00 
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APPENDIX H 
SOIL MOVEMENT TABLES  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

Table H1.  Soil Movement Guide Numbers: Lawn Irrigation (from 
Lytton 2001). 
 
 
 
 
 
 
 
 
 
 
 
 

Table H4.  Soil Movement Guide Numbers:  Tree Drying Case 
with Moisture Barrier (from Lytton 2001). 
 
 
 
 
 
 
 
 
 
 
 

Table H2.  Soil Movement Guide Numbers:  Flower Bed Case 
(from Lytton 2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table H3.  Soil Movement Guide Numbers: Tree Drying Case 
without Moisture Barrier (from Lytton 2001). 
 
 
 
 
 
 
 
 
 
 
 

ym Guide Numbers
Controlling Surface Suction

Due to Lawn Watering

pF – units
With 4 ft. Deep Moisture

Barrier
pF -- units

Measured
Suction

pF at
Depth,

zm,
m

2.5 2.7 3.0 3.5 2.5 2.7 3.0 3.5
2.7 3.2 0 0 0 0.1 0 0 0
3.0 9.6 5.1 0 0 0.1 0.1 0 0
3.3 17.7 12.1 5.1 0 0.1 0.1 0.1 0
3.6 27.1 20.7 12.1 1.6 1.3 0.5 0.1 0.1
3.9 38.1 30.8 20.7 7.3 3.8 1.9 0.5 0.1
4.2 50.4 42.1 30.8 14.8 7.7 4.9 1.9 0.1
4.5 63.6 54.7 42.1 23.9 12.4 9.1 4.9 0.8

ym Guide Numbers
Controlling Surface Suction Due to

Flower Bed Watering

pF – units With 4 ft. Deep Moisture Barrier
pF -- units

Measured
Suction
pF at

Depth,
zm,
m 2.5 3.0 3.5 2.5 2.7 3.0 3.5
2.7 3.2 0 0 0 0 0 0
3.0 13.1 0 0 0 0 0 0
3.3 27.3 7.0 0 3.7 1.0 0 0
3.6 48.7 14.2 1.6 11.6 6.2 1.1 0
3.9 69.5 35.1 10.2 22.5 15.2 6.4 0
4.2 90.3 56.0 21.5 35.1 26.6 15.3 2.4
4.5 111.0 76.7 42.3 49.0 39.7 26.6 9.1

ym Guide Numbers
Measured Equilibrium Suction at Depth, zm

(With 4 ft Deep Moisture Barrier)
pF -- units

Depth
of

Tree
Root

Zone, ft 2.7 3.0 3.3 3.6 3.9 4.2 4.5
4 -36.5 -25.2 -15.8 -8.1 -2.6 0.0 0.0
10 -116.3 -102.4 -88.4 -53.1 -21.5♦ 0.0 0.0
15 -193.5 -170.5 -147.5 -78.5♥ -21.5♦ 0.0 0.0
20 -278.2 -246.1 -214.2 -78.5♥ -21.5♦ 0.0 0.0

♥
Movement active zone, zA = 11.5 ft.

♦
Movement active zone, zA = 7.5 ft.

ym Guide Numbers

Measured Equilibrium Suction at Depth, zm

pF -- units

Depth of
Tree
Root

Zone, ft
2.7 3.0 3.3 3.6 3.9 4.2 4.5

4 -79.1 -60.1 -43.2 -28.4 -15.6 -0.1 0.0
10 -169.6 -146.3 -124.9 -82.8 -42.6♦ -9.7♠ 0.0

15 -244.7 -213.6 -182.5
-

108.1♥ -42.6♦ -9.7♠ 0.0

20 -333.4 -292.9 -252.5
-

108.1♥ -42.6♦ -9.7♠ 0.0
♥Movement active zone, zA = 11.5 ft.
♦Movement active zone, zA = 7.5 ft.
♠

Movement active zone, zA = 3.5 ft.
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APPENDIX I 
EXPANSIVE SOIL VOLUME CHANGE GUIDE 
NUMBER 
 

 

 
 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. I1.  Expansive Soil Volume Change Guide Number, Zone 2 
(from Covar 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. I2.  Expansive Soil Volume Change Guide Number, Zone 3 
(from Covar 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. I3.  Expansive Soil Volume Change Guide Number, Zone 4 
(from Covar 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. I4.  Expansive Soil Volume Change Guide Number, Zone 5 
(from Covar 2001). 
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Fig. I5.  Expansive Soil Volume Change Guide Number, Zone 6 
(from Covar 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. I6.  Expansive Soil Volume Change Guide Number, Zone 7 
(from Covar 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. I7.  Expansive Soil Volume Change Guide Number, Zone 8 (from 
Covar 2001). 


