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ABSTRACT

A finite element computer program has been developed to analyze slabs on elastic half space expansive as well as
compressible soils. Mindlin orthotropic plate theory is adopted for structural analysis of ribbed or constant thickness slabs. The
foundation soil is assumed to be an isotropic, homogeneous, and elastic half space. The behavior of an elastic half space is
calculated by dividing the surface of the elastic half space into rectangular regions. These regions are represented by stiffness
matrices and they are assembled onto the rectangular plate finite elements.

The shape of the soil surface underneath the slab is described by the differential soil movement (y ) and edge moisture
variation distance (en). The mounded soil surface requires an iterative procedure in the computer program for this soil-structure
interaction system. The program calculates displacements, moments in x and y-directions, twisting moments, and shear forces.
The comparisons of the results with the Post Tensioning Institute’'s (PT1) Design and Construction of Post-Tensioned Slabs-on-
Ground manual examples show that the PTI analysis is conservative for the center lift case, but is not conservative for the edge lift
case.
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CHAPTER |
INTRODUCTION

1.1 TheProblem

The soil, which represents a great portion of the
earth’s surface, is very complicated to deal with in regard to
its engineering behavior. The main problem is certainly the
variety of its material properties which can make it elastic,
plastic, nonhomogeneous, anisotropic, and compressible,
expansive or collapsing. It is necessary to understand the
properties of the supporting soil and also to describe its
behavior mathematically in order to design a foundation
properly. A geotechnical engineer dealing with the
problematic soils is often faced with the need to calculate
displacements of the foundation soil and to analyze the
effects of the displacements on the slab.

Foundation design on an expansive soil provides a
major challenge to a geotechnical engineer because of the
unique properties of these soils; shrink and swell. Expansive
soils swell when they absorb moisture from the environment
and shrink when they lose moisture to the environment.
Moisture movement in expansive soils is thus a major cause
for volume change and this moisture movement is a result of
unbalanced moisture energy (or soil suction) between the
expansive soil and its environment. The moisture
distribution does not occur uniformly within the soil
underlying the foundation and thus results in differential soil
movement. It is this differential movement that resultsin
major distresses in the slab foundations. The climatic
condition of a site is a major factor controlling the
magnitude of the differential soil movement. The climatic
condition of a site will determine the active zone, the
possible maximum seasonal changes of soil moisture
condition and thus the wet and dry soil suction profiles (Fig.
1.1).
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Dry Suction Profile

Fig. 1.1. Typical Environmental Effects on a House Foundation.

The style and format of this dissertation follows that of the
Journal of Geotechnical Engineering, ASCE.

These seasonal changes of soil moisture or soil suction
will dictate differential soil movement. Therefore, it is very
important for a geotechnical engineer dealing with expansive
soil to have knowledge of the soil suction distribution within
the soil below a slab foundation.

To determine the vertical soil deformation in excess of
the soil’ s expansion characteristics, the foundation soil needs
be properly formulated. There is a spectrum of foundation
models ranging from Winkler's type to the semi-infinite,
homogeneous and isotropic, elastic continuum. Perhaps the
best representation for the most frequently occurring soil
materials is the elastic half space, behavior of which is
described by Boussinesq's equation (Huang 1993).

Slab foundations have been analyzed using different
approaches such as approximate numerical solutions, finite
difference methods, and finite element methods. The finite
element method incorporating the foundation soil has
recently been widely accepted in analyzing the slab
foundations because of its versatility and reliability over
other methods. Two plate (or dab) theories are commonly
used in finite element applications: Kirchoff plate theory and
Hencky-Mindlin plate theory.

1.2 Background

Slab foundations on expansive soils have been used in
residential homes and lightly loaded commercia buildings
for many years. Many of these slabs were constructed as a
result of experience and observation rather than rational
design based analysis (Wray 1978). A significant number of
these slabs were considered to be failures due to the design
approaches that were dependent on engineering design
principles. In the late 1960s, the Building Research
Advisory Board (BRAB) initiated a research study in order
to regulate design of the increased number of residential and
light commercia building constructed on expansive soils.
BRAB established design criteria for residential slab
foundations. This study was completed in 1968 and
currently known as the BRAB method. The BRAB (1968)
method is highly empirical and based entirely on experience
gained from observing the performance of slab-on-ground
foundations throughout the USA. Four types of slab are
selected which are intended to represent all combinations of
soil and climatic conditions that are likely to occur. The
initial selection of dlab type is carried out from a table
relating it to soil type, according to the Unified Soil
Classification System, the minimum density, plasticity
index, unconfined compressive strength, and the climatic
rating. However, the influence of climate on the very
complex effects of soil volume change is not adequately
defined. Moreover, the design involves dividing slabs of
irregular shape into overlapping rectangles. The total
average dead and live loads are assumed to be uniformly



distributed over the whole slab. This procedure may
simplify the calculations but it is unrealistic.

The Post Tensioning Institute (PTI) initiated a research
study at Texas A&M University for development of new
guidelines for characterization of expansive soils under
different climatic conditions and of new finite element
structural analysis method for the design of slab foundations.
The method published by the Post Tensioning Institute
(1980) is based on research conducted by Wray (1978) and
the updated version of the method was published in 1996
and is the most recent attempt to improve the rationality of
the previous design methods. A slab resting on an elastic
continuum is analyzed using a modified form of a finite
element program developed by Huang (1974). The selection
of the elastic continuum foundation model over the most
popular and widely used Winkler (or spring) type models
makes the PTI method more realistic.

The more rational improvement in the PTI method is
perhaps in the characterization of expansive soils, while
taking into account all possible dimatic effects, to predict
the volume change of the foundation soil.
Recommendations are provided for estimating the edge
moisture variation distance, e, as a function of the
Thorntwaite moisture index, I, In addition, a more rational
method has been adopted in the determination of vertical soil
movement from the computer program VOLFLO based on
moisture diffusion and volume change relationship. The
variables used in this analysis are the type of clay mineral,
percent clay, depth to constant suction, the constant suction
value, velocity of moisture flow, and the edge moisture
variation distance.

As aresult of these research studies, there have been
many improvements and developments in slab foundation
designs, from empiricd to more rationa based on
engineering principles.

1.3 Objective of Study

The most current design procedure for the slabs on
expansive soils is the method by the Post Tensioning
Institute (1996). In the PTI design method, the analysis of
the plate structure with the finite element method has some
shortcomings that are the objectives of this research. For
instance, only rectangular slabs can be analyzed with the PTI
method. For non-rectangular geometries, the rectangular
slabs are overlapped to match the actual geometry. The PTI
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slab analysis is based on classical plate theory (Kirchhoff
plate theory or thin plate theory), but an improved method
should allow for thick plates if needed. Stiffening beamsin
the PTI method are converted to an equivalent slab thickness
for calculating the bending moment, shear, and deflection
and the method allows for auniform distributed load all over
the slab as well as line loads along the perimeter. However,
an improved method needs to allow a slab cross-section that
has stiffening beams and different magnitudes of distributed
loads at different locations on the slab.

Therefore, the research approach is to develop and
conduct a finite element analysis of a slab resting on an
expansive soil, which is modeled as an elastic half space, to
predict the magnitudes of bending moment, shear, and
deflection under applied design loads.

1.4 Outline of Dissertation

Chapter 1l presents an extensive literature review on
topics related to slabs on expansive soil foundations. In
order to have a better understanding of the present status of
knowledge in this field, the discussion in Chapter Il
summarizes the design methods that are extensively used in
many parts of the world.

Chapter I11 covers the theoretical background of the soil
suction concept, which is a very important parameter for
unsaturated expansive soils. The discussion also includes
topics on soil suction measurement techniques. Expansive
soils are also briefly mentioned in this chapter.

Chapter |V summarizes the major foundation modelsin
the literature. The formulation of the elastic half-space
foundation, which is adopted in this research, is presented in
detail.

Chapter V is devoted to the presentation of the theory
of the plates and the finite element method. Both the
Kirchhoff’'s plate and Mindlin's plate are discussed while
only the latter is adopted for the finite element analysis in
thisresearch.

Chapter VI describes the finite element computer
program developed in this thesis and Chapter VII explains
the applications of the computer program with several
examples.

Chapter VIII covers a brief summary of design tools
for slabs on expansive soils while the study of this research
is concluded in Chapter I X.



CHAPTER 11
BACKGROUND OF RIBBED SLABS
ON EXPANSIVE SOILS

2.1 Introduction

Investigations are continually being undertaken into the
development of more rational analysis and design
procedures for ribbed slab foundations on expansive soils.
Since the problems associated with constructing structures
on expansive soil were first recognized, numerous
foundation and structural design methods have been
proposed to prevent such damages. A stiffened raft
foundation may be a solution to those problems because of
its relative ease of construction, economy, and satisfactory
performance (Lytton and Woodburn 1973). The stiffened
raft usually consists of aslab about 10 to 15 cm (about 4 to 6
inches) thick, with regularly spaced edge and cross stiffening
beams. These are designed to limit distortion of the
superstructure to tolerable levels as the underlying soil
undergoes differential movement. The typical damages
caused by swelling foundation soil are cracking in building
walls, distorted slabs, and misaligned or broken buried
utility pipes.

If a foundation is placed on an expansive soil, the
geotechnical engineer faces a mgjor challenge because the
soil can respond with a change in volume
(shrinking/swelling). The expansive soil can respond not
only to the structural loading but also to a change of soil
moisture condition. The unique property of expansive soil is
the change in volume when it absorbs moisture from its
environment (swelling) or loses moisture to its environment
(shrinking). Lightly loaded structures such as houses,
apartments, and pavements have been affected by these
reactive heaving soils (mainly smectite type clay) in al over
theworld (Fig. 2.1).
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Fig. 2.1. Distribution of Expansive Soilsin the World (after Wray
1978).

To employ the dlab analysis procedures, the
geotechnical engineer needs to predict the differential soil
movement caused by the expansive soils. It is known that
the climatic condition of asiteis amajor factor controlling
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the magnitude of the differential soil movement. The
climatic condition of a site will determine the active zone,
the possible maximum seasonal changes of soil moisture
condition (wet and dry soil suction profiles, Fig. 2.2). Thus,
it is of great importance for a geotechnical engineer dealing
with expansive soil to have knowledge of soil suction
distribution within the soil. Once the soil suction profile is
obtained, the soil volume change induced by these soil
suction changes can be estimated.

Evaporation Precipitation

11 s |]]

Dry suction
profile

Wet suction
profile

Fig. 2.2. Suction Profiles.

When a lightly-loaded structure such as a slab-on-
ground foundation is constructed over expansive soils, the
climate conditions at the site has a great influence on the
type of distress that the foundation will undergo as a result
of distortion of the support provided by the foundation soil.
In general, there are two major types of expansive soil
distortion modes (Lytton 1972): center-lift and edge-lift
(Fig. 2.3). The center-lift case usually occurs when the soil
at the perimeter of foundation shrinks. The edge-lift case
usually occurs when the soil at the perimeter of foundation
swells. Either type of distortion will result in structural
damages if the slab is not designed properly. The distortion
mechanism should be selected to produce the worst val ues of
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Fig. 2.3. Sab Distortion Modes.



design moment, shear force and deflection (Lytton 1972).

2.1.1 Volume Change Behavior of Expansive Soils

The volume change behavior of expansive soils may
not be predicted satisfactorily using traditional soil
mechanics theories as well as elastic or plastic theory due to
the large magnitudes of volumetric strains involved (Lytton
1996). However, there are many methods that rely on these
theories as well as on some laboratory methods such as
consolidometer tests or even on moisture content
determinations. Lytton (1973) has shown that the volume
change of expansive soils can be predicted satisfactorily
with the use of soil suction, which has proven to be a stress
state variable for unsaturated soils (Fredlund and Rahardjo
1993). Thisis a more rational approach since suction as a
measure of the negative stress in the pore water, which pulls
the soil particles together, is dependent on boundary
conditions such as vegetation and climate. Suction is a
thermodynamic quantity which will retain al the effects of
the climate, such as humidity and temperature, within itself
and carry them as a stress effect on the soil particles. Lytton
(1973) has formulated his volume change theory using the
soil suction principle and the influence of the overburden
stress, soil fabric, and cracks within the soil mass.

2.1.2 Structural Analysisof Slabs

The early structural analysis procedures to predict
bending moments, shear forces, and deflections for the slab-
on-ground foundations are simple for the design purposes,
but are not based on the actual mechanics of soil-structure
interaction principles. In such cases, for example, one-
dimensional analysis is adopted and this analysis is carried
out in both directions to represent a two-dimensional case
Moreover, for the arbitrary shape slabs, the analysisinvolves
dividing slabs into overlapping rectangles. The dead and
live loads are assumed to be uniformly distributed over the
whole slab. These analysis procedures may simplify the
calculations, but they are not realistic. Later, Lytton (1970)
introduced the elastic mathematical models of beams and
slabs, which are based on the principles of mechanics, to
improve the rationality of the analysis procedures. The
effect of representing the two-dimensional problem as a one-
dimensional beam-on-ground is also investigated by Lytton
(1970), using the finite difference method to solve the two-
dimensional plate equation on coupled spring foundation.
With the development of high speed computers, the analyss
procedures for two and three dimensional complex problems
using the finite element method has become a common
practice. Wray (1978) analyzed a slab resting on an elastic
half-space foundation using the finite element method,
which is the most rational analysis proposed to date. The
finite element method seems to be a promising structural
analysis method because of its versatility of applying it to
many complex structures.

2.2 Existing Design M ethods

There are more than ten design procedures for the slab-
on-ground foundations (Wray 1978). However, among the
existing methods the ones by Building Research Advisory
Board (1958, 1963, 1968), Lytton (1970, 1971, 1972, 1973),
Walsh (1974, 1978), Frazer and Wardle (1975), and Post
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Tensioning Institute (1996) have been mentioned in the
literature quite often. These methods have reasonably
rational bases, but al have some shortcomings both in their
theory and in their degree of simplification. Consequently, it
has been necessary to mention these methods briefly, to
evaluate the validity of the basic assumptions and the design
variables.

2.2.1 The Building Research Advisory Board (BRAB)
Method

The BRAB (1968) method is highly empirical and
based entirely on experience gained from observing the
performance of slabs-on-ground throughout the USA (Wray
1978). Four types of slab are selected which are intended to
represent all combinations of soil and climatic conditions
that are likely to occur (PTI 1996). The slab typesare:

TYPEI: Unreinforced

TYPEII: Lightly reinforced against shrinkage and
temperature cracking

TYPE I11: Reinforced and stiffened

TYPEIV: Structural (not directly supported on the
ground)

The initial selection of dlab type is carried out by
relating it to soil type, according to the Unified Soil
Classification System, the minimum density, plasticity index
or the unconfined compressive strength, and the climatic
factor. BRAB produces a map (Fig. 2. 4) showing the
distribution of the climatic rating, G, for the USA, but there
is not enough information how it is being estimated.

Fig. 2.4. Climatic rating, C,, for the USA (from Wray 1978).

Type | and Type Il slabs are usually constructed on
stable soils and Type Ill is recommended for use on
expansive soils. The Type IV is used as a suspended floor
slab in the areas where the soil bearing capacity is not
sufficient. The Type Il slab has several assumptions; the
design loads of the structure are uniformly distributed over
the slab area and the support index, C, which is dependent
upon the climatic rating ,C,, and the soil plasticity index ,PlI,
is a constant for all slab sizes (Fig. 2.5). The support index
is a measure of the proportion of the slab that is being
supported by the foundation soil.

The Type |1l slab design involves dividing dlabs of
irregular shape into overlapping rectangles with long and
short sides of length L and L® respectively. Among several
support conditions the ones similar to the models shown in



Fig. 2.3 are adopted permitting a one-dimensional analysis
which is carried out in both directions, L and L® to represent
the two-dimensional case. The design values for maximum
moment, M Shear, Vma and deflection, Wy, by
applying the above mentioned simplifications and
assumptions, are given by
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Fig. 2.5. Support Index, C (from Wray 1978).

The relationships given in Fig. 2.5, for determining the
support index which is an important parameter in Eq. 2.1,
are empirical and they cannot be used for other climatic
conditions. Thevalue of Cisindependent of the slab length.
This assumption is not in accordance with observed
measurements (Wray 1978).

2.2.2 Lytton’s Method

Lytton (1970) improved the rationality of the BRAB
procedure by abandoning the concept of an empirical
support index and proposing elastic mathematical models of
beam and slab on a curved mound. Lytton formulated the
foundation soil for center lift (Fig. 2.3) analysis using the
Winkler model and for edge lift analysis using the coupled
spring model. The design quantities are then calculated
directly once the relevant properties influencing the soil-
structure interaction have been established. Lytton modified
the genera beam equation by including the effects of
shearing resistance, which was represented by the coupled
springs, of the foundation soil. The differential equation,
which was put forward to represent a beam on a coupled
spring mound, is given by

dwd d
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where
El = beam flexura stiffness,
w = transverse deflection of the beam,

(82}

y = position of mound,

G = effective soil shear modulus,

h = effective depth within which soil shearing
resistance is mobilized,

B = effective width within which soil support for the
beam is mobilized,

k = effective subgrade modulus, and

g = distributedload onthe beam.

A second equation for the case of an isotropic elastic
plate, which includes the effects of the soil shearing
resistance, on the same foundation typeis given by

DN*w- N[GhsN(w- y)]+k(w- y)=p (2.3)
where:
D = flexural rigidity of the plate,
p = distributedload on the plate,
4 4 4
N:i+1, N4:ﬂ—+2 E 2+‘”—4 Laplace
ix Ty Y Wy Ty
operators.

The shape of the curved mound was chosen to fit
experimentally determined or observed field shapes and was
givenintheform

y=bx" (2.4)

where:

m the mound exponent,

b = aconstant,
x = distance aong the beam, and
y = distance below the highest point of the mound.

Lytton proposes that the beam equation can be applied
to a slab when the dlab is assumed to take a cylindrical
deflection pattern, however, it is also pointed out that if two
dimensional bending becomes the primary mode of
distortion, then the assumption of the cylindrical deflection
pattern is not valid. This differential equation applies only
in the region where the beam is in contact with the soil, and
a second equation, in which kB and GhB are put equa to
zero, applies from the points not in contact with the soil. An
iterative process is required to locate these points. A rigid
beam solution was also developed to determine maximum
moment and shear envelopes. The main benefit gained from
these studies is an appreciation of the relative importance of
the different design variables and the rational mathematical
models of soil-structure interaction.

Lytton (1972) proposed to use line loads around the
perimeter and along the centerline of the slab and a
uniformly distributed dead and live |oad over the whole slab.
The maximum moment is then calculated in each direction,
assuming both the soil and slab to be rigid, and then reduced
by a correction term to account for soil compressibility. In
the case of center lift, the equation for the one-dimensional
design moment, M, in the directionL is given by

g.LLe 12

TL
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where:
g = lineload acting on the perimeter,



line load acting through the center of the building,
uniformly distributed load from dead and live

= total load on the rectangle,
= support index,
and for the edge lift case

q.LL  L? N TL
< (2qe +qL ) e (26)
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In the case where the one-dimensional design moment
obtained from Eqgs. 2.5 and 2.6 are adjusted for the two-
dimensional plate behavior for the long direction

L&
M, =M,el.4- 0.4—2 2.7)
é Leg
and for the short direction
é el ou
Mg=M,;&+09(L2- c)c— - ¢y (2.8)

The design values for the shear force and deflection are
estimated from

4M ML?
W:
12H

(2.9)

where Vis the shear force andwis the deflection.

The support index presented by BRAB depends on
experience and empirical consideration of observed site
conditions, however Lytton proposes a support index, c, by
using the rational analysis of the interaction between the
expected swelling profile and the slab. The support index
can be obtained from

1
_m+1ém+1 1 TUmu

m+2§ p—— Ag (2.10)
where:
m = mound exponent,
A = dabares,
T = total load acting on the slab,
Vn = maximum differential heave, and
k = Winkler subgrade modulus.

The support index can also be estimated from the
nomograph (Lytton 1972) which is given in Fig. 2.6 below.
More precise methods of determining the differentia soil
movement, Yy, based on the thermodynamics of soil
moisture and the volume strain theory for swelling soils
were developed by Lytton (1973) and they will be presented
in detail in coming sections.

2.2.3Walsh’s Method

Walsh (1974) proposed a design method which is
essentially a combination of the BRAB (1968) and Lytton
(1970) approaches, Walsh's main contribution being an
attempt to rationalize the determination of the support index.

€

Asin the case of BRAB, simplified design recommendations
were given; four slab types were defined, and their selection
was based on soil type and expected differential soil
movement. The Type Il slab was recommended for use in
areas where problems could be anticipated because of the
presence of expansive soils.

Again the foundation is separated into overlapping
rectangles and each rectangle is analyzed in both directions
assuming the simplified two-dimensional center and edge
heave patterns. Walsh (1974) also assumes the dead and live
loading to be uniformly distributed over the whole slab area,
but uses the beam on mound equation (Eq. 2.2) proposed by
Lytton (1970) to determine the support index.
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Fig. 2.6. Nomograph for Support Index, ¢ (from Lytton 1972).

The slab is assumed to be flexible and interacts with
the mound as shown in Fig. 2.7. Walsh adopts the same type
of spring foundation model and differential equations
proposed by Lytton (1970). The design values of moment,
shear, and stiffness can then be determined from equations
identical to those proposed by BRAB (Eg. 2.1).

Walsh (1978) has attempted to modify his earlier
method by introducing a procedure for the determination of
the stiffness constant, k. The mound is assumed to be
consisting of a soft mound with stiffness, ks, underlain by a
hard mound with stiffness, ky. A laboratory or field
procedure is outlined to obtain swell-pressure curves from
which ks can be determined. The beam on mound equation
was modified to

dz dz(z- y,'j) , (z— yos) _ 211
— AT 04 - + - Ol - = .
Eld)(1 A — B“(z ygj) Ad = Bs(z y§) q (211)

where:

AT A = the Rkt for the hard and soft mound,
respectively,

B', B = the Rks for the hard and soft mound,
respectively,

b = the cooperating width which determines the
extent of the coupling effect,

R = the width of the foundation affected by the
beam, and



Yo, Y% = the initial mound shape for the hard and soft
mounds, respectively.

In the solution of this equation the hard mound was
assumed to heave one-eighth, and have a stiffness 30 times
that of the soft mound.

2.2.4 Fraser and Wardle Method

A three-dimensional semi-infinite elastic sail
foundation has been introduced by Fraser and Wardle (1975)
instead of the Winkler and coupled spring foundation
models proposed by Lytton (1970) and Walsh (1974). This
is a more rational approach than the previous Winkler and
coupled spring models. Fraser and Wardle used an existing
finite element program (FOCALS) to analyze a plate
structure on the three-dimensional elastic solid foundation
model. However, they did not produce a general design
procedure for the slab-on-ground foundations built on
expansive soils.
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Fig. 2.7. Soil-Sructure Interaction Proposed by Walsh (1974).

2.25 The Post Tensioning Institute (PTI) Method

The method published by the Post Tensioning Institute
is based on research conducted by Wray (1978). PTI
published the first edition of “Design and Construction of
Post-Tensioned Slabs-on-Ground” in 1980 and the second
edition was published in 1996 after somerevisions. The PTI
method is the most recent attempt to improve the rationality
of the previous design methods. The two-dimensional slab
resting on an elastic continuum was analyzed, using a
modified form of a finite element program developed by
Huang (1974). The material properties which are used in the
program are Poisson’s ratio and Young’'s modulus for soil
and concrete. The input variables were selected as:
differential soil movement, edge moisture variation distance
(Fig. 2.3), tiffening beam depth, beam spacing, perimeter
loading, and slab length. The dead weight of the dlab was
calculated automatically within the program. The influence
of each of the variables on the design values of moment,
shear, and deflection was examined and the computer output
analyzed to develop equations for a general design
procedure.

Recommendations are provided for estimating the edge
moisture variation distance, e, as a function of the
Thorntwaite moisture index, I, (Fig.2.8). The Thornthwaite
index is an indicator of change in moisture in the soil
through evapotranspiration or rainfall. A positive
Thornthwaite index represents a net surplus of soil moisture
while a negative index indicates a net moisture deficit. The
Thornthwaite moisture index distribution for the United

/

Statesisgiven in Fig. 2.9 below. This moisture index can be
applied to any geographical location throughout the world.

In addition, a more rational method has been adopted
in the determination of differential swelling soil profile, ym,
which is based on moisture diffusion/volume change
relationship. This procedure has been put forward as a
computer program known as VOLFLO, which will be
described in the next section, and is being used along with
the current PTI slab program. The variables used in this
analysis are the type of clay mineral, percent clay, depth to
constant suction, the constant suction value, velocity of
moisture flow and the edge moisture variation distance.

Recommendations are also given for obtaining the
values of these variables, for instance, the equilibrium
suction value is obtained from the curve given by Russam
and Coleman (1961), which relates the constant suction
value under a covered area to the Thornthwaite moisture
index (Fig. 2.10).
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Fig. 2.9. Distribution of the Thornthwaite Index in the US (from
Wray 1978).

2.3 Design Parametersyn, and ey,

Design parameters y,, and ep, are two important values
that describe the design mound shapes for edge and center
lift conditions. These parameters depend on the soil type,



soil moisture diffusion characteristics, and climatic
conditions.

2.3.1TheVOLFLO Program

VOLFLO is a computer program which performs
volume change and flow calculations for expansive soils. It
was developed in the early 1980's at Texas A&M University
under the guidance of Prof. Dr. Robert L. Lytton. VOLFLO
calculates the soil shrinkage and swelling using soil suction
concept. Only the effect of horizontal moisture flow is
considered and the effect of vertical moisture movement is
neglected. The program calculates volume change and
moisture movement rates in expansive soils for five different
sets of effects occurring near afoundation system:

1. General case—no effects

2. A vertica barrier to moisture flow at the edge of the
foundation

3. A horizontal barrier to moisture flow at the edge of the
foundation

4. A tree or flowerbed near the edge of the foundation.
Tree roots may or may not extend beneath the
foundation

5. Both trees and horizontal barrier. This case is a
combination of cases 3 and 4.

The volume change can be calculated for an expansive
soil with a depth to constant suction down to 20 feet. The
soil may be composed of up to 6 layers within the active
zone.
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Fig. 2.10. Thornthwaite Index versus Constant Suction (from PTI
1996).

2311 Theory of Volume Change and Horizontal
Moisture Flow asin VOLFLO

Darcy’s law relates the moisture flow in fully saturated
soils to a hydraulic gradient through a constant saturated
permeability and can be stated as

v=k, % (2.12)

where:
% velocity of water flow,
Ko saturated permeability, and
i = hydraulic gradient.

Darcy’ s equation can be employed for unsaturated soils
by assuming that the hydraulic gradient can be represented
by a change in suction along two distinct points. For a

&

horizontal moisture flow the equation can be written as
(Lytton 1977)

v, =- deD—hQ (2.13)
eDxg

where

[h = horizontal changein suction,

x = changein horizontal location,

vy = horizontal velocity of moisture flow, and

k = unsaturated permeability.

For the vertical moisture flow, the total gradient or
head consists of the suction head plus elevation head, and
therefore Darcy’s law for the vertical flow, from which the
equilibrium suction profile corresponding to a zero vertical
moisture velocity is determined, can be written as

v, =- kédlh +12 (2.14)
ebz g

where:
v, = vertica velocity of moisture flow,
x = changein vertical location.

Lytton (1977) used the Gardner’'s equation, which
relates the permeability to suction through some constant
soil coefficients, to estimate the differential soil swelling
within the active zone using the soil suction envelope values.
The general form of the equation is asfollows

K (2.15)
1+ a|ht|n

where:
k

hy

an

unsaturated permeability,
total suction, and
dimensionless soil property constants.

The change in suction in the vertical direction in an
unsaturated soil profile can be estimated if Eq. 2.15 is
plugged into Eq. 2.14 as

Dh=-Dz&l+ (1+ a4h|”)lﬁ (2.16)
é Kol

Values for the soil property constants a and n, and the
in-situ saturated permeability values for the typica
expansive soilsare givenin Table 2.1.

Table 2.1 Typical Field Values of Permeability for
Expansive Clay Soils (Lytton 1977).

Soil a n ko (cm/s)
Y azoo 1.0 45 107
Lackland 2.7 10°
Horsham 2.0 10°
West Laramie 10° 3.0 45 10°
clay shale

Flagstaff Gully ... 2.0 10°
Dam




In the VOLFLO program, for the average expansive
soil coefficients as selected from Table 2.1, the modified
Gardner’s equation (Eg. 2.15) takes the form

s an-6
=220 217
1+10" %) |

Velocity of the horizontal moisture flow for the cases
1, 2, and 3, which are mentioned in the previous section, is
estimated from the relationship

(2.18)

Fig.2.11. Velocity Distribution Factor (after Lytton 1977).

The volume change of expansive soils results from the
applied pressure and from changes in suction. A conceptual
drawing of pressure and suction versus volume change is
shown in Fig. 2.12. For instance, the simultaneous decrease
in suction and increase in pressure result in a small change
of volume, as given by the path from point A to point C in
Fig. 2.12. The suction decreases from point A¢to point B¢
while the pressure increases form point B¢to point C& The
volume change process can be viewed as the net result of
two processes (Lytton 1994); at constant mechanical
pressure or total stress the volume increases along the path
from A to B and at constant suction the volume decreases
along the path from point B to point C.

For small increments of volume change on the surface
described by Fig. 2.12, the volume strain is linearly related
to the logarithms of both pressure and absolute value d
suction (Lytton 1994). The genera relation between the
volumetric strain and the pressure, matric and osmotic
suction for aswelling soil is given by

DV 5 5 S
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and for a shrinking soil is given by
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where:

hi, hk = initial and final matric suction,

S, S = initia and final values of mean principal stress,
R, @ = initial andfina osmotic suction,

g = volume change coefficient due to shrinking or
swelling,

a = volume change coefficient due to overburden,

e} = volume change coefficient due to osmotic effects,
and

DV/V = percent volume changein decimal form.

Volume
4

-« T
Pressure +Suction ¢

Fig. 2.12. Volume Change with Pressure and Suction for Soils
(after Lytton 1994).

The overburden correction coefficient, or the initial
mean principal stress, is defined as the pressure at the depth
above which no volume change correction is made and can
be represented as

s; =h,(g) (2.21)
where:

heo = depth above which no volume change correction is
applied,

g = unitweight of soil.

Similarly, the mean pressure at a depth z can be
calculated from the following relationship

s =g, Ji+2k, /3 (2.22)

where K, is the lateral earth pressure coefficient. Due to
cycling swelling and shrinking of expansive soils, the lateral
earth pressure coefficient may vary practically from zero
(especially when the soil shrinks) to the passive earth
pressure levels (especially when the soil swells). Typical
values that have been back-calculated from field
observations of swelling and shrinking soils are as follows
(Lytton 1994):
Ko
Ko

0.00 when the soil is badly cracked,
0.33 when the soil isdrying,



Ko
Ko
soil isswelling.
The volume change coefficient due to shrinkage and
swelling has the following relationship in terms of the
percent fine clay content of the foundation soil

0.67 when the soil iswetting up, and
1.00 when the cracks are closed and the

g =[%fineclay (indecimal)] " doo (2.23)

where dqo is the volume change guide number for different
types of active clays, which is given in the parenthesis in
Fig. 2.13, which was developed by McKeen (1981) using the
pressure plate apparatus and the compressibility—volume
change relationship as given by the slope of Fig. 2.12 as

g, =- (2.24)

SJEISE

The percent fine clay represents the percent of the
portion of the soil which passes the No. 200 sieve which is
finer than 2 micron size, in other words

é %- 2micron U

% fineclay = €96 No.200 sieveH (2.25)
30
I
Q B VA (Olllolg/‘:}) (0.220)
é (0.033)
- 10 I
jg = VA ne (0.163)
C (0.096)
< osE (0.061)
VB
L VB (0.061)
(0.033)
3
01 1 1 I N N N B | 1
01 05 10 30
Adivity Retio, Ac

Fig. 2.13. Volume Change Guide Numbers (after McKeen 1981).

The activity ratio, Ac, and the Cation Exchange
Activity ratio, CEAc, asgivenin Fig. 2.13 above, are used to
estimate the suction compression index, @, and they are
defined as

~ Pl %
o= (%- 2micron) .,

(%- No.200 sieve)

(2.26)
e - CEC
~ (%- 2micron) - 100

(%- No. 200 sieve)

where:

PI = plasticity index,
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CEC = Cation Exchange Capacity in milliequivalents per
100 gms of dry soil.

The Cation Exchange Capacity, CEC, can be calculated
in a number of ways, one of the practical methods, which
was developed by Mojeckwu (1979), is to correlate it to the
plasticity limit, PL, or the liquid limit, LL, value of the soil
as

cec @PL in percent)**’
2.27)
CEC @(LL in percent)®?

Similar to the derivation of the volume change
coefficient for the matric suction, the coefficients for the
mean principa stress and osmotic suction changes can be
calculated using Fig. 2.12 and Eq. 2.19 (Lytton 1994)

2% v
=V =V

g = bs and g, bp (2.28)
S P

The compression index for the mean principal stressis
also related to the commonly used swelling compression
index, Cs by

@)

s (2.29)

& _1+e0

where g, is the void ratio and C; is given by the slope
depicted in Fig. 2.14.

log o(P)

Coefficient of
/~ compressibiity
C

Coefficient of
sweling

Fig. 2.14. ATypical e-logP Curve.

The compression index, g, is aso related to g, by the
following equation (Lytton 1994)

% =G (2.30)
1+
afh 6
&1a g




where:

q = volumetric water content,

h = suction, and

g = slope of the suction versus volumetric water

content asshown in Fig. 2.15.

fh

fig

Suction, h

Volumetric water content, q

Fig. 2.15. A Typical Soil-Water Characteristic Curve.

The part of Eq. 2.30, which is on the right side of g, is
less than 1, so the index @ can be taken equal to g, for dl
practical reasons. Then, the vertical volume change at depth
zbelow the edge of the foundation is calculated as

DH _ @V o (2.31)
H eVg

where f is a crack fabric factor. The back-calculated values
for f are 0.5 when the soil is shrinking and 0.8 when the soil
is swelling. Therefore, the total heave or shrinkage at depth
zis

H

&

Yn =8¢ (Dz) (2.32)

I
=

where Dz is the vertical increment.

2.3.1.2 Naiser's Study of Predicting Vertical Soail
M ovement

Naiser (1997) improved the current method (i.e.,
basically the VOLFLO method) of predicting the differential
movements for expansive soils. Naiser presents the
procedures to calculate suction profiles and to predict soil
swelling and shrinking beneath foundations which generate
maximum slab distortion modes. The suction profiles are
developed using the variables such as depth, time, local
surface annual weather and vegetation conditions, the
suction compression index, unsaurated permeability, and
unsaturated soil diffusivity.

The main contributions of this research are: egquations
and procedures to calculate the equilibrium suction profile
and depth to constant suction for a particular soil profile and
location, equations to calculate the horizontal velocity flow
of water in unsaturated soils, the methodology to predict
differential soil movement shortly after a slab has been
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constructed and before the soil under the slab has reached an
equilibrium moisture content, and procedures to apply
differential soil movement theory to soil profiles with
multiple layers and moisture effects cases to be used for
slab-on-ground design.

The current version of VOLFLO, which is used along
with the PTI dlab program, is based on the principles
described in the previous section and Naiser (1997) has
expanded the parameters involved in the current VOLFLO
procedure in predicting the volume changes of expansive
soils by incorprating the work done by Mitchell (1980) and
Gay (1994). Mitchell (1980) developed and applied simple
mathematical methods for predicting soil suction profiles.
Gay (1994) developed a finite element program (FLODEF)
for the transient moisture flow in unsaturated soils and a
procedure to estimate the mean volumetric water content for
soils dependent upon the location and climatic conditions.

The procedures mentioned above are applied to several
moisture effect cases that are common with light commercial
and residential structures such as bare soils at the surface,
grass at the surface, trees at the surface, and a flowerbed at
the surface. Additionally, these procedures include
calculating the effects of differential soil movement caused
by the introduction of design effects such as vertical and
horizontal moisture barriers.

2.3.1.3 Mitchel's Method of Predicting Suction
Distribution in a Soil Profile

From the concept that the volume change of an
expansive soil is afunction of the rate of moisture diffusion,
which is due to a suction change gradient, through the soil
and as well as the soil type, Mitchell (1980) developed a
diffusion equation that governs the soil suction distribution
in time and location. The genera form of the moisture
diffusion equation, which is used to predict the expansive
soil movement from a known source of moisture or suction
change, isasfollows

2 2 2
T°u 1 U+M+ f(x,y,z,t)_iﬂ

TR N p aft (239
where:

u = soil suction,

X,Y,Z = cartesian coordinates,

f(x,y,zt) = moistureinflow rate per unit volume,

t = time,

p = unsaturated permeability, and

a = soil moisture diffusivity.

If the soil moisture diffusivity is assumed as a constant
over a small range of soil suction change, the unsaturated
permeability can be related the soil moisture diffusivity as
follows

p=29_ (2.34)
[Slo

where:

U = absolute value of the slope of the suction versus

gravimetric water content curve,
g = dryunit weight of the soil, and



@, = unitweight of water.
Mitchell’ s unsaturated permeability, p, is also related to
the saturated permeability, ko, as given below

_ k)

04343 (2:35)

p

where hy is a constant suction value of approximately —100
cm for clays. From Egs. 2.34 and 2.35, the soil moisture
diffusivity, a, can be determined easily from three soil
properties; unsaturated permeability, dry unit weight, and the
slope of suction versus gravimetric water content, which can
also easily be established from several soil samples at
different suction levels thus different water content levels
(Fig.2.16).

A

Suction in pF

Gravimetric water content, w

Fig. 2.16. A Typical Suction versus Gravimetric Water Content
Curve.

The Mitchell’s diffusion coefficient can aso be
estimated from the suction compression, g,, characteristics of
the soil and using the slope of the suction versus water
content curve, S, which is anegative value, (Lytton 1994) as

a =0.0029 - 0.000162 (S)- 0.0122 (g, ) (2.36)

and the value of Sfrom

S=-20.29+0.1554LL %)- 0.117(P %)+0.0684% #200) (2.37)

where:

LL = liquid limit in percent,

Pl = plasticity index in percent, and

-#200 = percent of the soil passing the #200 sieve.

Mitchell also introduces two test methods that can be
employed to estimate the diffusion coefficient; the Soaking
Test and the Evaporation Test. Both of the test methods are
described in detail by Mitchell (1980). Once the diffusion
coefficient of the soil has been measured, the diffusion
equation can be solved to obtain the suction distribution
within a soil profile by applying the appropriate boundary
conditions of the problem. After the suction distribution is
obtained, the soil movements induced by these suction
changes can be calculated form the volume strain equation.

The suction profiles for time dependent moisture
variations in an expansive soil profile can be estimated by
solving the diffusion equation (Eqg. 2.33) in the z-direction,
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and assuming that the solution is a periodic function of
cosine and sine functions, as (Mitchell 1980)

AL .

h(zt)=h, + hoeé ® Scosopnt - 7[R 2 (2.38)
& a5

where:

h(z,t) = suctionasafunction of depth and time,

he = equilibrium suction value expressed in pF,

hy = amplitude of suction change at the surface,

a = soil diffusion coefficient using Mitchell’s

unsaturated permeability,

n = number of suction cycles per second, and

t = timein seconds.

To calculate the maximum and minimum suction
profiles, Naiser (1997) sets the cosine term in Eqg. 2.38 to 1
and arrives at

o [T
h(zt)=h, +h e Ja_fa

(2.39)

Equation 2.39 indicates that the limiting suctions
decrease exponentially with depth as a function of the
coefficient of diffusion, and therefore the depth o constant
suction, z, can be obtained by solving Eq. 2.39 for z as
follows

7 =1 Ingh(z’t)-hC

mJEého
a

Values of h, and h, for clay soils with different levels
of Mitchell’s unsaturated permeability have been calculated
using a trial and error procedure (Lytton 1994). Table 2.2
gives the h. and h, values that change with the soil type and
Thorntwaite Moisture Index, TMI, for the wet suction
profile. Valuesof naretaken as 1 cycle per year for all TMI
less than —30.0 and 2 cycles per year for all TMI greater than
—30.0. The dry suction profile has a h; value of 4.5 pF and
h, value of 0.0 pF. Table 2.3 gives the equilibrium suction
values, which are dependent on the Mitchell unsaturated
permeability and the Thornthwaite Moisture Index, that can
be used to estimate suction profiles.

For unsaturated soils, it is known that the permeability
is not a constant, but is a variable dependent on total suction.
Laliberte and Corey (1967) relates the unsaturated
permeability, k, to the total suction, h;, asfollows

.

(2.40)

oC

& 0
k =k &-22 (2.41)
€h 5

where nis a positive constant and is close to 1 for clays and
4 for sands. |If this eguation, for an n vaue of 1, is
substituted for the unsaturated permeability in Eq. 2.14, the
following equation, which can be employed to the estimate
changesin suction in avertical soil profile, can be obtained



Dh=- Dz + Lo (2.42)

hy G

where hy is a constant suction value of approximately —100
cm for clays. This eguation takes into account, to some
degree, the increased permeability of the soil due to the
cracksthat are open at high suction levels as comparedto the
values calculated using Eq. 2.16 (Lytton 1994).

Table 2.2. Values for the Wet Suction Profile (after Lytton
1994).

Thornthwaite Mitchell he hy

Moisture unsaturated (pF) (pF)

Index permeability

(cnt/s)
-46.4 5 10° 4.43 0.25
1 10° 4.27 0.09
-11.3 5 10° 384 184
1 10° 2.83 0.83
26.8 5 10° 347 1.47
1 10° 2.79 0.79
Table 2.3. Equilibrium Suction Values (after Lytton 1994).
Mitchell Unsaturated Permeability
Thornthwaite (cnfls)
Moisture

I ndex 1 10° 2.5 10* 5 10°
-46.5 4.27 4.32 443
-30.0 3.80 3.95 4.29
-21.3 342 3.64 4.20
-11.3 2.83 3.10 384
26.8 2.79 3.05 347

2.3.2 Edge Moisture Variation Distance

Differential expansive soil movement, which is a very
important parameter in designing the slab foundations, may
take different distortion shapes, but the most important
shapes for the design purposes are the ones that generate the
maximum values of moment, shear, and deflection. The two
critical distortion modes that are used in the slab-on-
expansive soil foundation designs are the edge lift and center
lift conditions as depicted in Fig. 2.3. The edges of the slab
will move up or down in response to the seasonal moisture
changes. The distance within which these changes takes
place is caled the edge moisture variation distance (Lytton
1977). In other words, the edge moisture variation distance
is considered to be the distance between the edge of the slab
foundation and the point beneath the slab where the suction
change is at tolerable value (usualy less than 0.2 pF). An
empirical relation between the edge moisture variation
distance and the Thornthwaite Moisture Index (Fig. 2.8) has
been used in the PTI design method. It is aso known that
the edge moisture variation distance depends on the
permeability of the soil (Lytton 1994) and therefore can be
obtained by thisrelation.

Gay (1994) developed afinite element program (named
as FLODEF) for the transient moisture flow in unsaturated
soils, which uses the unsaturated soil properties such as the
soil moisture diffusion and unsaturated permeability. This
program has been used extensively by Jayatilaka et al.
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(1992) in the study of vertical moisture barriers. Lytton
(1994) used the results of the program to correlate the edge
moisture variation distance with the unsaturated soil
properties. Edge lift conditions were simulated by a one
year wet spell following a dry suction profile condition.
Center lift conditions were simulated by a one year dry spell
following a wet suction profile condition. The dry and wet
conditions used annual suction variation patterns that were
appropriate for each of nine different climatic zones ranging
from a TMI of —46.5 to +26.8, a typica range for Texas.
The resulting edge moisture variation distances for the
center |ift cases are depictedin Fig. 2.17.

3.6

33 |
o 30 o
o Diffusion Unsaturated
o 5,7 Coefficient, ~ Permeability,
g < SoilNo. a cm?/sec _ p. cnflsec
§ 24 b 1 787103 10103
g 2 5.8 10° 7.5 10*
2 L3 Py
8 21} 3 3.9'10 50" 10
& 4 19" 10° 2.510*
8 18 5 80°10°  1.010°
8 6 58" 10% 75108
g 15F 7 3.9 10% 5.0'10°
3 12 | 4
=
5 09|
hii 5

0.6

Soil No. 6,7—/
03 |
0.0 1 1 1 1 1 1 1
-50 -40 -30 -20 -10 0 10 20 30

Thornthwaite Moisture Index

Fig. 2.17. Edge Moisture Variation Distances for Center Lift
Case (after Lytton 1994).

Seven different soils were used to calculate the
relationship between the edge moisture variation distances
and TMI. For the center lift condition (Fig.17), the Soils No.
1, 2, and 3 were selected as pervious and Soils No. 5, 6, and
7 were chosen as practically impervious. Only soils with the
properties No. 3 and 4 have edge moisture variation
distances in the range used in the current PTI manual
(Lytton 1994).

The edge moisture variation distances for the edge lift
condition are given in Fig. 2.18. Similar to the center lift
case soil types, the Soils No. 5, 6, and 7 are chosen as
practically impervious while Soils No. 2, 3, and 4 have edge
moisture variation distances in the range used in the current
PTI manual, and the Soil No. 1 is more pervious and is
outside the range. The edge moisture variation distances of
soils with different unsaturated permeabilities different than
these seven soil types can be found by interpolation on these
two figures.

Simple laboratory tests can be used to determine
important properties of expansive soils such as the
unsaturated soil permeability and diffusivity, and in return
these parameters can be employed to predict a very
important parameter, the edge moisture variation distance,
for the analysis and design of slab foundations. Lytton
(1997) developed a method to determine the edge moisture
variation distance for a particular design return period. In
developing the method, Lytton makes use of the design
return periods that that were used to obtain the edge



moisture variation distances as given in Figs. 2.8, 2.17, and
2.18. The design return period used for Fig. 2.8 is 10 years
whilefor Figs. 2.17 and 2.18 is 50 years. The design periods
are usually within these ranges of 10 to 50 years, typically
being 20 years with 5% risk (Naiser 1997).

The resulting equation for the edge moisture variation

distanceisasfollows

ez - o]
e =e +(e - e M—

mo ~ Cmy (2.43)

0 -
Z50- Do g

where €m, ,emm,and €, A€ the edge moisture variation

distances for the return period of r, 10, and 50 years,
respectively. The use of the Gumbel probability density
function, which is commonly used to represent the
probability of weather events, may be used to establish the
risk level that is desired for design service life of the
structure. The z, zg, and z; vaues used in Eq. 2.43 are
computed from the Gumbel cumulative probability
distribution curve asfollows

.

Z =— (2.44)
é 1 60b
& InGl- =%
e e I'a

where both r and b are shape factors and can be assumed as
one, and r isthe desired return period.

Gay (1994) did extensive work in the area of
calculating the mean volumetric moisture content for a given
soil mass dependent upon the soil’s depth of available
moisture, day, and the location’s potential evapotranspiration
(i.e,, the Thornthwaite Moisture Index). The depth of
available moisture, da, is defined as the maximum depth of
moisture available for use by transpiring vegetation, whichis
stored within the soil zone down to the depth to constant
suction. Gay developed a set of functional relationships that
are used to calculate the mean volumetric moisture content,
which are then used to calculate the equilibrium suction
value for a particular soil profile and location.
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Fig. 2.18. Edge Moisture Variation Distances for Edge Lift Case
(after Lytton 1994).

2.4 This Study

The analysis method developed in this study is aimed
at improving the rationality of the soil structure interaction
models proposed by the earlier researchers. An upper bound
solution is obtained by assuming the worst initial mound
shape, which is simply defined by two parameters e, and yp,.
The soil is modeled as an elastic half-space. This is more
rational than the previous Winkler and coupled-spring
models and is represented in the program by surface finite
elements. The structure and foundation are represented by
conventional rectangular finite elements which enable any
raft geometry and load distribution to be dealt with easily.

Once the mound shape has been defined the initial area
of contact between it and the Eft is readily determined.
When the self weight, dead and live loadings are applied, the
raft undergoes immediate settlements which is determined
by putting the appropriate elastic properties of the soil and
the slab into the program. As deflections take place, the
contact area normally increases and therefore iterations must
be carried out to obtain the equilibrium solution.



CHAPTER I11
SOIL SUCTION AND EXPANSIVE SOILS

3.1 Soil Suction Concept

Many techniques have been devel oped to determine the
properties of unsaturated soils. Of these properties, soil
suction has proven to be most favorable as it takes into
account many of the fundamental concepts associated with
the behavior of unsaturated soils (Mitchell and Avalle 1984).
Soil suction is one of the most important parameters
describing the moisture condition of unsaturated soils.

In general, porous materials have a fundamental ability
to attract and retain water. The existence of this
fundamental property in soils is described in engineering
terms as suction, negative stress in the pore water. In
engineering practice, soil suction is composed of two
components: matric and osmotic suction. The sum of matric
and osmotic suction is called total suction. Matric suction
comes from the capillarity, texture, and surface adsorptive
forces of the soil. Osmotic suction arises from the dissolved
salts contained in the soil water. This relationship can be
formed in an equation as follows

h, =h, +h (3.1)

where hy is total suction, hy, is matric suction, and hy is
osmotic suction.

Total suction can be calculated using Kelvin's
eguation, which is derived from the ideal gas law using the
principles of thermodynamics and is given as

h =2 jnEP 2 32)
Po &

where:

he = total suction,

R = universal gas constant,

T = absolute temperature,

Y = molecular volume of water,

P/ P, = reative humidity,

P = partial pressure of pore water vapor, and

Po = saturation pressure of water vapor over a flat

surface of pure water at the same temperature.

The total suction value of a soil sample can be inferred
from the relative humidity and suction relationship (i.e., EQ.
3.2) if the relative humidity is evaluated in some way. In a
closed system, if the water is pure enough, the partial
pressure of the water vapor at equilibrium is equal to the
saturated vapor pressure at temperature, T. However, the
partial pressure of the water vapor over a partly saturated
soil will be less than the saturation vapor pressure of pure
water due to the soil matrix structure and the free ions and
salts contained in the soil water (Fredlund and Rahardjo
1993). Under isothermal conditionsin closed systems the
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relative humidity may be associated with the water content
of the system such as 100 percent relative humidity refers to
a fully saturated condition. The relative humidity and the
water content relationship in closed environments is the
basis behind the working principle of total suction
measuring devices such as filter paper methods and
psychrometers.

In engineering practice, soil suction has usualy been
calculated in pF units (Schofield 1935) (i.e., suction in pF =
logip(Jsuction in cm of water|)). However, soil suction is
also currently being represented in the log kPa unit system
(i.e., suction in log kPa = logp(Jsuction in kPa])). The
relationship between these two systems of units is
approximately suction in log kPa = suction in pF — 1.

Matric suction can be calculated from pressure plate
and pressure membrane devices as the difference between
the applied air pressure and water pressure across a porous
plate. Matric suction can be formed in a relationship, from
equilibrium of pressures across the water meniscus, as
follows

h, =-(u,-u,) (3.3)

where hy, is matric suction, u, is applied air pressure, and uy,
is free water pressure at atmospheric condition.

The osmotic suction of electrolyte solutions, that are
usually employed in the calibration of filter papers and
psychrometers, can be calculated using the relationship
between osmotic coefficients and osmotic suction. Osmotic
coefficients are readily available in the literature for many
different salt solutions. Table 3.1 gives the osmotic
coefficients for several salt solutions.

Osmotic coefficients can aso be obtained from the
following relationship (Lang 1967) as

&P 0
f=- r—Wlngii (3.4)
vimw R g
where:
f = osmotic coefficient (dimensionless),
% = number of ionsfrom one molecule of salt (i.e., v =

2 for NaCl, KCl, NH4Cl and v = 3 for Na,SO,, CaCl,,
Na28203! etC),

m = molality, moles solute per 1000g solvent,

w = molecular mass of water,

ry = density of water,

P/P, = relative humidity,

P = partial pressure of pore water vapor, and

P, = saturation pressure of water vapor over a flat

surface of pure water at the same temperature.

The relative humidity term, P/R, in Eq. 3.4 is aso
known as the activity of water, a,, in physical chemistry of
electrolyte solutions. The combination of Eg. 3.2 and Eq.
3.4 gives a useful relationship that can be adopted to
calculate osmotic suctions for different salt solutions as

h, = - VRTmf (3.5)



Table 3.2 gives osmotic suctions for several salt
solutions using osmotic coefficients from Table 3.1 and Eq.
3.5.

Table 3.1. Osmotic Coefficients for Several Salt Solutions.

Osmotic Coefficients
at 25°C
Molality
(m)

0.0010 0.9880 0.9880 0.9880 0.9608 0.9623 0.9613 0.9627
0.0020 0.9840 0.9840 09840 0.9466 0.9493 0.9475 0.9501
0.0050 0.9760 0.9760 0.9760 0.9212 0.9274 0.9231 0.9292
0.0100 0.9680 0.9670 0.9670 0.8965 0.9076 0.8999 0.9106
0.0200 0.9590 0.9570 0.9570 0.8672 0.8866 0.8729 0.8916
0.0500 0.9440 0.9400 0.9410 0.8229 0.8619 0.8333 0.8708
0.1000 0.9330 0.9270 0.9270 0.7869 0.8516 0.8025 0.8648
0.2000 0.9240 0.9130 0.9130 0.7494 0.8568 0.7719 0.8760
0.3000 0.9210 0.9060 0.9060 0.7262 0.8721 0.7540 0.8963
0.4000 0.9200 0.9020 0.9020 0.7088 0.8915 0.7415 0.9206
0.5000 0.9210 0.9000 0.9000 0.6945 0.9134 0.7320 0.9475
0.6000 0.9230 0.8990 0.8980 0.6824 0.9370 0.7247 0.9765
0.7000 0.9260 0.8980 0.8970 0.6720 0.9621 0.7192 1.0073
0.8000 0.9290 0.8980 0.8970 0.6629 0.9884 0.7151 1.0398
0.9000 0.9320 0.8980 0.8970 0.6550 1.0159 0.7123 1.0738
1.0000 0.9360 0.8980 0.8970 0.6481 1.0444 0.7107 1.1092
1.2000 0.9440 0.9000 0.8980
1.4000 0.9530 0.9020 0.9000
1.5000 0.6273 1.2004 0.7166 1.3047
1.6000 0.9620 0.9050 0.9020
1.8000 0.9730 0.9080 0.9050
2.0000 0.9840 0.9120 0.9080 0.6257 1.3754 0.7410 1.5250
2.5000 1.0130 0.9230 0.9170 0.6401 1.5660 0.7793 1.7629

References:

aHamer and Wu 1972

bGoldberg 1981

°Goldberg and Nuttell 1978

Nacf KCF NH,CI® | Na,SO,° | cacClf | Na,S,0,°| MgCl,*

Unsaturated soils consist of three phases. soil solid,
water, and air, and the interaction of these phases is very
complex. Soil suction, or free energy of soil water, which is
a thermodynamic quantity, is the parameter that describes
the behavior of unsaturated soils. A brief attempt has been
made to describe soil suction, or Gibbs free energy of soil
water, from the viewpoint of thermodynamics in Appendix
A.

3.2 Soil Suction M easurement

The measurement of soil suction is crucial for applying
the theories of the engineering behavior of unsaturated soils.
With a reliable soil suction measurement technique, the
initial and final il suction profiles can be obtained from
samples taken at convenient depth intervals. The changein
suction with seasonal moisture movement is vauable
information for many engineering applications.

There are severa commonly used soil suction
measuring devices in the current geotechnical practice such
as filter paper, transistor psychrometer, thermocouple
psychrometer, pressure plate and membrane. With the filter
paper method, both total and matric suction measurements
are possible, but one can only measure total suction with the
psychrometers and matric suction with the pressure plates or
membranes.

3.2.1 TheFilter Paper Method

The filter paper method has long been used in soil
science and engineering practice and it has recently been
accepted as an adaptable test method for soil suction
measurements because of its advantages over other suction
measurement devices. The filter paper method is an
inexpensive and relatively simple laboratory test method,
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from which both total and matric suction measurements are
possible.

Basically, the filter paper comes to equilibrium with
the soil either through vapor (total suction measurement) or
liquid (matric suction measurement) flow. At equilibrium,
the suction value of the filter paper and the soil will be
equal. After equilibrium is established between the filter
paper and the soil, the water content of the filter paper discis
measured. Then, by using afilter paper water content versus
suction calibration curve developed using osmotic salt
solutions, the corresponding suction value is found from the
curve.

Table 3.2. Osmotic Suctions of Several Salt Solutions.

Osmotic Suctions in 0kPad

at 25°C

M?r'r?)“‘y NaCl Kel NHCl | N&SO, CaCh NaS,0; MgCl,
0.001 5 5 5 7 7 7 7
0.002 10 10 10 14 14 14 14
0.005 24 2 2 % % 34 %
0.010 48 48 48 67 67 67 68
0.020 9% 9% 9% 129 132 130 133
0050 | 234 233 233 306 320 310 324
0100 | 463 460 460 585 633 597 643
0200 | 916 905 905 1115 1274 1148 1303
0300 | 1370 | 1348 | 1348 | 1620 1946 1682 2000
0400 | 1824 | 1789 | 1789 | 2108 2652 2206 2739

0.500 2283 2231 2231 2582 3396 2722 3523

0.600 2746 2674 2671 3045 4181 3234 4357
0.700 3214 3116 3113 3498 5008 3744 5244
0.800 3685 3562 3558 3944 5880 4254 6186
0.900 4159 4007 4002 4384 6799 4767 7187

1.000 4641 4452 4447 4820 7767 5285 8249
1.200 5616 5354 5343
1.400 6615 6261 6247

1.500 6998 13301 7994 14554
1600 | 7631 | 7179 | 7155
1800 | 8683 | 8104 | 8076

2000 | 9757 | 9043 | 9003 | 9306 20457 11021 22682
2.500 | 12556 | 11440 | 11366 | 11901 29115 _ 14489 32776

3.2.1.1 Background of the Filter Paper Method

The filter paper method, which was developed in
Europe in the 1920s, came to the United States in 1937 with
Gardner (1937) started its initial applications in the field of
soil science. Since then, the filter paper method has been
used and investigated by numerous researchers. Many
research scientists have tackled different aspects of the filter
paper method. Different types of materials were used, such
as filter papers and suction measuring devices, and different
experimental techniques to calibrate the filter paper and to
measure suction of the soil sample. Therefore, it is very
difficult to compare these methods on a one-to-one basis.
All the calibration curves established from Gardner (1937)
to Swarbrick (1995) appear to have been constructed as a
single curve by using different filter papers, a combination
of different soil suction measuring devices, and different
calibrating testing procedures. However, Houston et al.
(1994) developed two different calibration curves; one for
total suction and one for matric suction measurements using
Fisher quantitative coarse filter papers. For the total suction
calibration curve, saturated salt solutions and for the matric
suction calibration curve tensiometers and pressure
membranes were employed. Houston et a. (1994) reported
that the total and matric suction calibration curves were not
compatible.  This simply implies that two different
calibration curves, one for matric and one for total suction,
need to be used in soil suction measurements. However, it is
believed that the two curves reflect an expected hysteresis
between wetting and drying effects and that the appropriate
curve for both matric and total suction is the wetting curve



since this matches the process that the filter paper undergoes
in the measurement process.

3.2.1.2 Calibration of the Filter Papers

The calibration for the suction wetting curve for filter
paper using salt solutions is based upon the thermodynamic
relationship between total suction (or osmotic suction) and
the relative humidity resulting from a specific concentration
of a salt in distilled water. Pressure plate and pressure
membrane devices are usually employed in the drying filter
paper calibration. The pressure plate apparatus can measure
matric suction values up to 150 kPa. However, with the
pressure membrane device matric suction values can be
extended up to 10,000 kPa.

A wetting curve using sodium chloride solutions and a
drying curve using pressure plate and pressure membrane
devices were constructed by the author for Schleicher &
Schuell No. 589-WH filter papers. The calibration curves
are shown in Fig. 3.1. As it is seen from the figure the
wetting curve plots below the drying suction curve, as is
expected of the hysteresis process.

4.5 T T
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No. 589-WH Filter Paper]
3.5
o \ |h| = -6.6595w + 5.2262
~ 3 R? = 0.9905
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- 2.5 | |
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c A
2 1 filter papers — .
8 (Wetting Curve) (Drying Curve)
= | =
> 1.5 T ]
@ |h| = -8.247w + 5.4244 X |
11 R” = 0.9969 ; —
(1.5 < || < 4.15) \ Ihl = 1.1451w° 4
0.5 R®=0.9821
: \ (0.95< |h| < 1.82)
0 adlaa ]
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Fig. 3.1. Wetting and Drying Filter Paper Calibration Curves.

3.2.1.3 Soil Total and Matric Suction Measurements with
the Filter Paper

Soil total suction measurements are similar to those
measurements in the filter paper calibration testing. The
same testing procedure can be followed by replacing the salt
solution with a soil sample. Soil matric suction
measurements are also similar to the total suction
measurements except that an intimate contact should be
provided between the filter paper and the soil. A suggested
testing procedure for soil total and matric suction
measurements using filter papersis outlined in Appendix B.

3.2.2 Thermocouple Psychrometers

The thermocouple psychrometer is currently one of the
most widely used methods of soil suction determination
which can be used either in the field or the laboratory.
Spanner (1951) described a method of measuring vapor
pressure without the need to place a drop of water on the
evaporating junction. The Peltier effect is used to condense
a drop of water on the evaporating junction. A typical
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drawing of a thermocouple psychrometer is depicted in Fig.
3.2

Chromd-condantan
thermocouple wires

Fig. 3.2. Schematic Drawing of a Thermocouple Psychrometer.

Peltier in 1834 discovered that upon passing a current
across a junction of two dissimilar metas, there is an
absorption of heat at the junction, causing the temperature to
rise or fall, depending on the direction of applied current. If
the degree of cooling is sufficient enough to bring the
junction below the dew point of the surrounding moisture,
the moisture will condense on the junction. Initially, the
thermocouple is cooled below the dew point temperature by
passing a current through the junction. Once the instrument
is cooled, the thermocouple is controlled by the evaporation
or condensation of the water on the junction. The
temperature of the thermocouple then converges to the dew
point where evaporation ceases and the temperature remains
constant. The current necessary for the tip to accomplish
this and remain at the dew point is related to the relative
humidity. A relationship between micro-voltage and soil
suction is established by calibration tests as shown in Fig.
33
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Fig. 3.3. A Typical Thermocouple Psychrometer Calibration
Curve.

The thermocouple psychrometers can cover the range
of relative humidities from 94% to close to 100%,
corresponding to the suction values up to 8,000 kPa



However, in order to measure suctions to an accuracy of
about 10 kPa, the apparatus must be capable of
distinguishing dew pointsto the order of 0.001° C (Spanner
1951). This factor puts asevere limitation on the accuracy
of the thermocouple psychrometers. The reliable resolution
of the thermocouple psycrometersis in the order of 100 kPa
(Lee 1991).

3.2.3 Transistor Psychrometers

With the rapid progress in microchip technology over
the last twenty years it has now become possible to use
transistors for measuring relative humidity. The transistor
psychrometer has been developed in Australia to effectively
replace the thermocouple psychrometer for total suction
measurement. The transistor psychrometer operates in a
thermally insulated bath. The variation of room temperature
is controlled to be within +0.5°C. The transistor
psychrometer is capable of measuring total suction ranging
from 100 kPa (about 3 pF) to 10,000 kPa (about 5.5 pF) with
an accuracy of about £10 kPa (+0.01 pF). This accuracy is
greater than that required for most engineering applications.

The psychrometer system consists of the following
parts: the probes, athermally insulated bath, and the constant
temperature room. For the calibration of the probes and the
testing stages, the probes are enclosed in a thermally
insulated bath. Standard salt solutions are used for
calibrating the probes. A typical drawing of a transistor
psychrometer probeis depicted in Fig. 3.4.

} Probe shaft %
Dry Wet
Transistor Transistor

Distilled
water drop

Probe
cap

| Sail
sample

Fig. 3.4. A Schematic Drawing of a Transistor Psychrometer
Probe.

There are two transistors, the wet and dry bulb
transistors, within each of the probe. The transistors are
very sensitive to minor changes in temperature and thus a
constant temperature environment is important. The flow of
water molecules from the water drop to the saturated filter
paper (saturated with the salt solution for the calibration or
conditioning) or the surface of a soil specimen produces
cooling of the wet transistor relative to the dry transistor.
The temperature differences recorded in millivolts (mV) are
converted to atotal suction for each of the specimens tested.
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3.2.4 Pressure Plate and Pressure Membrane

The pressure plate and pressure membrane devices and
methods were developed in the soil science field to study the
water uptake and retention of soils. The soil water
characteristic curve which is obtained by plotting various
applied pressures (matric suctions) against the water
contents of soil specimens has wide areas of application in
geotechnical engineering. The main components of the
pressure plate and membrane apparatus are a pressure
chamber, a porous ceramic plate or cellulose membrane, and
an air compressor. A typical schematic drawing of a
pressure plate or pressure membrane apparatus is shown in
Fig. 3.5.

Lid Air amnnlv
1 !
Sl =] N Pressure
samples \N “— ber
Ceramic plate or — l L L L l «— Water
cellulose membrane I reservoir
o | o
l Water outlet

Fig. 3.5. A Schematic Drawing of a Pressure Plate or Pressure
Membrane Device.

The main difference between the pressure plate and
pressure membrane devices is that the former uses a ceramic
porous disk that can be used for pressures up to 150 kPa and
the later uses cellulose membranes with which pressures can
be extended up to 10,000 kPa. The ceramic disks are rigid
enough to carry the soil specimens on them, but a support is
provided for the highly flexible membrane.

Prior to each test, the porous plate or the membrane is
completely saturated with distilled water and then sealed
within the pressure chamber along with the soil specimens
which rested on the surface of the plate or membrane (Fig.
3.5). With the influence of the applied air pressure, the
moisture inside the soil specimen and the ceramic plate or
the membrane is expelled out and collected in a graduated
cylinder until a suction equilibrium is reached between the
soil specimen and the applied air pressure. At equilibrium,
the suction inside the soil specimen equals the applied air
pressure. The air pressure is then released and the moisture
content of the soil specimen is determined.

3.3 Expansive Soils

Expansive soils cause damages to structures due to soil
volume changes induced by changes in soil moisture
conditions (soil suction). Swelling or shrinkage does not
occur uniformly within the soil mass underlying the
structure and thus results in differential soil movements. It
is this differential movement that causes major distress in
lightweight structures such as houses, warehouses, and
pavements. The typical damages caused by the expansive
soil are cracking in building walls, distorted foundation
slabs, and misaligned or broken utility pipelines. Expansive
soil is one of the most costly natural disasters in the U.S,,
although its destructive impact is not as catastrophic as
earthquakes or tornadoes, but it is responsible for $2.2



billion n structural damages each year (Jones and Holtz
1973). The primary problem that arises with expansive soil
is its volume change and high swelling pressure as the soil
moisture state changes.

Not all soils create problems due to swelling when
brought into contact with a water source. Only soils with
high swelling potential will cause damage to buildings. The
clay minerals are generally classified into three main groups
for most engineering purposes as kaolinite, illite, and
montmorillonite. Montmorillonites undergo greater volume
changes upon changes in suction than do kaolinites and
illites. In these soils large magnitudes of volume strains are
involved that it is not possible to predict with the classical
soil mechanics principles.

3.3.1 Clay Minerals

Clay soils are generally composites of different
combinations of several clay minerals, such as kaolinites,
illites, and montmorillonites. These clay minerals are tiny
crystalline substances with particle sizes ranging from 10°®
mm to 1nmm, and are generally referred to as colloids.
Unlike sands and silts, the grain size distribution of clays has
amost no influence on the engineering behavior whereas
colloidal properties such as adsorption of water due to large
specific surface area of the particles dominate the
performance of the clay soils (Grim 1953, Hillel 1980).

Clay minerals are formed by chemica weathering of
rock forming mineras (i.e., decomposition of the primary
minerals and their recomposition into new ones).
Chemically, clay minerals are hydrous alumino-silicates.
Typical alumino-silicate clay minerals exist as layered
microcrystals, composed of two fundamental structural
units: the silicon-oxygen tetrahedron and the aluminum:
oxygen or hydroxyl octahedron unit. The units are bonded
together into “sheets’. Stacking of these sheets, along with
different bonding in the crystal lattice, define the different
clay minerals. Understanding the structure of clay minerals
helps define the micro-scale mechanisms of shrink and swell
behavior of expansive soils. For the purpose of
distinguishing expanding and nonexpanding clay minerals, it
is sufficient to describe the common kaolinite,
montmorillonite, and illite minerals in engineering practice.

3.3.1.1 Kaalinite Minerals

Kaolinite consists of aternating layers of silica and
alumina sheet (i.e, 1:1 layer). The layers are held together
by hydrogen bonding between hydroxyls from the alumina
sheet and oxygens from the silica sheet. Such bonding is
very strong, preventing water entering into the basic layers
and allowing many layers to build up to make large crystals.
A typical kaolinite crystal may be 70 to 100 layers thick
(Guven 1996). Due to the relatively large particle size and
low specific surface area, kaolinite shows much less
swelling than most other clay minerals.
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3.3.1.2 IlliteMinerals

Illite is also a 2:1 type mineral with repeating layers of
an alumina sheet in the middle and silica sheet at top and
bottom. Illite is very similar to montmorillonite but the
layers in illite are bonded together strongly with potassium
cations. Such a tight bonding between layers prevents the
expansion of the entire lattice and makes illite much less
expansive than montmorillonite. The engineering behavior
of illiteis between kaolinite and montmorillonite.

3.3.1.3 Montmorillonite Minerals

Montmorillonite is made of repeating layers of an
alumina sheet (gibbsite) sandwiched by two silica sheets
(i.e., 2:1 layer). The bonding between the silica sheets is
weak thus water and exchangeable ions can easily enter
between the layers, pushing the layers further apart. As a
result, the soil volume increases significantly. Because of
the extremely small particle sizes and unbalanced charge in
the octahedral sheet, mainly due to the isomorphous
substitution of auminum with magnesium or iron in the
octahedral sheet, montmorillonite shows a distinctive
swelling/shrinking behavior. Upon wetting, montmorillonite
clays may swell much more than its dry volume and when
dried they tend to shrink and crack (Hillel 1980).

3.3.2Summary

Microscale mechanisms of shrink/swell behavior of
expansive soils, such as clay-water interaction, are only
useful for qualitative analysis, since the influence of the
different components on volume change is difficult to
separate. Also, exact measurements for the type and amount
of different clay minerals are practicaly impossible.
Because of all these, the physical and/or mechanical
properties of soils that reflect the microscale mechanisms of
expansive soils can be described using the concepts of
thermodynamics, especially the Gibbs free energy concept
(soil suction). Thermodynamics deals with energy and its
transformation. The energy associated with the physical and
chemical interactions at microscale level within a clay-water
system can therefore be transformed into another form of
measurable energy using the principles of thermodynamics.



CHAPTER IV
FOUNDATION MODEL

4.1 Introduction

The analysis of the interaction between the dlab
foundations and the supporting soil foundation is of
fundamental importance to geotechnical engineering. Many
of the available interaction models are primarily concerned
with elastic analysis. The slab and foundation soil
interaction has been analyzed with the linear finite element
method in this research. The plate is considered to be an
assemblage of rectangular finite elements and the behavior
of each element is characterized by a stiffness matrix. The
element stiffness matrices are assembled into a total
structural stiffness matrix by using the conditions of
continuity of displacements and equilibrium of nodal forces.
Once the plate model has been assembled, it must be
connected, in some way, to the supporting soil foundation.
This requires the derivation of foundation stiffness
coefficients associated with the nodal points corresponding
to those in the plate model.

In order to analyze an actual complex foundation
problem, often certain assumptions have to be made. The
foundation is a very complex medium. However, for the
case of an elastic continuum, since it is the response of the
foundation within the contact area and not the stresses or
displacements inside the foundation soil which are of
particular interest. The problem reduces to finding a
relatively simple mathematical expression which can
describe the response of the foundation within the contact
area with a reasonable degree of accuracy. Many
researchers have attempted to create a convenient model that
properly represents the physical behavior of a red
foundation. Thus, a whole spectrum of foundation modelsis
known; at one end is the Winkler model consisting of
closely spaced, independent linear springs and at the other
extreme is an elastic continuum. There is a large class of
foundation materials occurring in practice which can neither
be represented by a Winkler type foundation or by an
isotropic continuum. To find a physically close and
mathematically simple representation of such models for the
soil-structure interaction, there are attempts made by
Pasternak, Hetenyi, Filonenko-Borodich, and Vlasov which
will be described in section 4.2.

In this study, the foundation is assumed to be an
isotropic, homogeneous, and elastic half space. The
behavior of an elastic half space is calculated by dividing the
surface of the elastic half space into rectangular regions.
These regions are not proper finite elements in the usual
sense, even though their behavior is represented by stiffness
matrices and they are assembled in exactly same way as the
plate finite elements. Therefore, they may be called
rectangular half space elements (Fig. 4.1 below).
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4.2 Foundation Models

The Winkler foundation is the simplest and the most
widely used model. Most of the finite element computer
programs in use today are based on the Winkler (or spring)
foundation models. The spring foundation system resultsin
adiagonal matrix that can easily be incorporated into afinite
element program. The simplest simulation of a continuous
elastic foundation is assumed to be composed of a number of
closely spaced, vertical, independent, linear elastic springs
providing vertical reaction only. Such areaction is assumed
proportional to the deflection. Thus, the relation between
the pressure and the deflection of the foundation surfaceis

p(xy) = kw(x,y) (4.2

where:
p = appliedvertical stress,

w = vertical deflection, and
k = foundation soil modulus.
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Fig. 4.1. Sab on Elastic Half-Space Foundation.

Equation 4.1 indicates that the vertical force at point
(x,y) depends only on the vertical deflection at the same
point (xy) and is independent of the deflections at all other
points, so the stiffness matrix of a Winkler foundation is a
diagonal matrix with zero coefficients everywhere except on
the diagonal, those relating the vertical force to the vertical
deflection at the same point. Such afoundation is equivalent
to aliquid base asif the foundation soil has no shear strength
(Huang 1993). The deformation occurs only immediately
under the applied load (Fig. 4.2) and displacements are zero
outside the loaded area. It is evident that this type of
foundation is not realistic for most real materials.

The equation of equilibrium governing the linear
bending of an isotropic plate on a Winkler foundation of
subgrade modulus, k, can be written as

4 4 4 o
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where, w is the vertical displacement, q is the distributed
load, and D is the flexural rigidity of the slab. According to
the Winkler's model, the vertical displacement of a slab is
constant when it is subjected to a uniformly distributed load,
g. Also, the value of the subgrade elastic modulus, K, is not
unique, but depends on the geometry of the slab.

P
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Fig. 4.2. Winkler Foundation Model.

4.2.1 Pasternak Foundation

The extension of the Winkler model by including shear
interaction between the spring elements is the Pasternak
foundation model. In order to introduce continuity of
vertical displacements Pasternak assumes the existence of
shear interactions between the spring elements. Pasternak
considers a plate consisting of incompressible vertical
elements, which deforms only by transverse shear. This
plate is located on the top of the springs in order to connect
their ends (Fig. 4.3 below). The Pasternak model is
governed by the following differential equation

p = kw- GN?w (4.3)

where:
G = shear modulus,
PR [ ,
N =—=t— the Laplacian operator.

xs Ty

The second term on the right hand side of Eq. 4.3
represents the effect of the shear interaction. For an
arbitrarily distributed load p(x,h) over area A, the deflection
of the foundation surface of apoint Q(x,y,0) is

w(x, y):i pbohK, (ER)d>dh (4.4)
20G

where:

R = [(¢ X%+ (yv-h)7",

b? = koG, and

Ko(bR = modified Bessel function.

Theintegration is taken over the loaded area.

4.2.2 Hetenyi Foundation

In order to connect the top of the springs of Winkler's
foundation model and thus ensure interaction between the
spring elements, Hetenyi chose a plate which deforms in
bending only (Fig. 4.3 below). The differential equation
describing the physical behavior of this systemisgiven as

p=kw- DN*w (4.5)
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where:
D =theflexural rigidity of the plate and
T I :
N%=—— T t2——*t— the Laplacian operator.
™ XAy Ty

Filonenko-Borodich Foundation--

Hetenyi Foundation-- Tensioned Membrane

Coupled Bending Plate

Pasternak Foundation--
Sheer Coupled Plate

e

Fig. 4.3. Foundation Models.

4.2.3 Filonenko—Bor odich Foundation

A similar approach to both Pasternak and Hetenyi
Foundations to achieve the interaction between the spring
elements was also used by Filonenko—Borodich. The
continuity between the individual spring elements is
provided by connecting them to a thin elastic membrane.
Filonenko—Borodich proposed to use an elastic membrane
subjected to a constant tension field, T, as a connection for
the top ends of the Winkler's springs (Fig. 4.3). The
differential equation that represents the equilibrium of the
proposed system isdefined as

p=kw- TRAwW (4.6)

where, T is the tension field. The two elastic constants
necessary to characterize the soil model are k and T. The
models by Pasternak, Hetenyi, and Filonenko—Borodich,
also known as two-parameter models, are all equa to the
Winkler model if the parameters G, D, and T in Eq. 4.3, Eq.
4.5, and Eq. 4.6, respectively, are taken as zero.

4.2.4 Vlasov Foundation

Vlazov's approach to the formulation of the soil model
is based on the application of a variationa method. By
imposing certain restrictions upon the possible distribution
of displacements in an elastic layer, Vlazov was able to
obtain a soil response function similar to the ones by
Pasternak, Hetenyi, and Filonenko—Borodich. The details
of the general variational method of analysis of foundation
models can be found in Vlazov and Leontiev (1966).

4.3 Elastic Half Space (or Elastic Continuum)
Foundation

The supporting foundation soil for the plate is
considered to be an elastic, isotropic, and homogeneous
semi -infinite continuum with Es and ns, modulus of elasticity
and Poisson’s ratio of the soil, respectively. The behavior of
the half space, particularly the region located on its surface
corresponding to the plate area, actually being the plate
trace, is represented by a stiffness matrix. This is achieved
by numerical integration, when the singularity occurs, of



Boussineq equation over a small sub-rectangular region of
the rectangular finite elements. Generally, a comparison
between Winkler and elastic continuum foundations
indicates that elastic continuum foundations have a much
larger deflection basin (Poulos 2000). In addition, a
foundation soil will deform as in Fig. 4.2 under a
concentrated load for the Winkler model and as in Fig. 4.4
under the same load for the elastic half space foundation
model, the latter is considered to be more realistic (Poulos
2000).
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Fig. 4.4. Elastic Half Space Foundation.

A summary of the Boussinesq's solution of the elastic
half-space problem is given by Timoshenko and Goodier
(1970). In the Boussinesq formulation, the deflection at any
point depends not only on the force at that point but also on
the forces at al other points, which is a more realistic
approach as compared to the Winkler's model. The
horizontal displacements produced in the semi-infinite
elastic space by the load P

u
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where, u is the horizontal displacement, r and z are defined
in Fig. 4.4. At the boundary plane (z = 0), see Fig. 4.4, Eq.
4.7 will take the form

@D D> (D> D~

U= - m (4.8)
2pEr

The vertical displacement w produced in the elastic half-
space by theload Pis given by

W= P (;1+n 2(l ) (4.9)
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and at the boundary surface (z = 0), Eq. 4.9 becomes

2

P{l- n?
pEr

This is the form of equation that is frequently referred
in foundation engineering applications. However, it is better
to rewrite Eq. 4.10 with some notations that are suitable for
its modification in the finite element model formulation.

For the elastic half-space continuum model, the force-
deflection relationship (as given in Eqg. 4.10) can be
rewritten as

(4.10)

2
w, = 1-ns Pj (4.11)
PEs i
where:
W = deflectionat pointidueto aforceat pointj,
p = forceat pointj,
rj = distance between pointsiandj,
Es = elastic modulus of the foundation soil, and
ns = Poisson’sratio of the foundation soil.

There is no known closed form solution to evaluate Fj.
411 for the flexibility coefficients. The only known
approximate solutions are the ones by Cheung and
Zienkiewicz (1965) and Huang (1993). Cheung and
Zienkiewicz (1965) considered the foundation consisting of
a series of rectangular pressure areas whose centers coincide
with the nodal points of the slab. The flexibility coefficients
are obtained by integrating the Boussinesq equation over the
rectangular element area for the points at which the
Boussinesq equation is not defined.

A similar technique to that of Huang (1993) is adopted
in calculating the flexibility coefficients using a five-point
Gauss quadrature formulain bothx and y directions (Fig. 4.5
below). The foundation flexibility matrix is determined in
two ways: direct and numerical integration. The flexibility
matrix coefficients can be obtained directly if the point at
which the deflection is sought and the point at which the
vertical unit load is applied is different. In other words, if i
1 j (EQ. 4.11), then the coefficients are obtained directly.
However, if the point of interest for the deflection and the
applied vertical unit load coincide, then Eq. 4.11 becomes
singular and thus a numerical integration technique can be
employed to overcome the singularity.

For a 4noded linear rectangular finite element (Fig.
4.5), the flexibility matrix of the foundation soil can be
written as
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Equation 4.12 can aso be represented in a short form as
follows

W} :l.fijJ!le} (4.13)

where:
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Fig. 4.5. A Typical 4-Node Linear Rectangular Finite Element.

The f;; flexibility coefficients in Eq. 4.13 for the off-diagonal
terms can be calculated from

2
;= 1n 1 (4.14)
PEs 1

However, if i = j, then the diagonal coefficients (i.e., f11, f22,
fa3, and f44) can only effectively be obtained by a numerical
integration scheme. In general, the numerical quadrature
formulafor atwo-dimensional domain can be written as

+1+1

o oF(X h)dxdh = A% F@g )NW (4.15)
i=1j=1

where:

N, M = number of Gauss (quadrature) points in the x

and h directions (Fig. 4.6),

(%, h; ) = Gauss points,

(W, W) Gauss weights, and
F(x,h) = functionto beintegrated.

Equation 4.11 needs be rewritten so that it can be
transformed into aform of Eq. 4.15 as

wlx,y) =5 “L (4.16)

IdEs .1’)( +y

The term in the brackets on the right side of Eq. 4.16 is a
constant, so only the term in x and y needs to be numerically
integrated over arectangular region described by (%o,Yo).
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Fxy) = (4.17)

The coordinates are transformed as

:X?(l+x)b ax = 2°dx
(4.18)
y=22(1+h)b dy=22dh
2 2
> X
A Beret
Transformation > X
v\ F]y
Discrqized
} @ Domain
v \2 3 4 5 \
y Node
. Number
Finite Element
Number

Fig. 4.6. Element Transformation.

In order to obtain the flexibility coefficients from Eq. 4.16,
the applied vertical load P is considered as a unit load, and
also to make use of the numerical integration, this unit load
is distributed over the specified area (%,Y,) as a uniform
pressure of  1/(X%%o). Then, applying the above
transformationsto Eq. 4.17 resultsin

1
F, h)_+é+0l Xo o Xo Yo gxdh  (4.19)
2 2 4
\/?(1+x)u +gy—°(1+h)g
€2 u éz2 u

The Boussinesqg equation in (x,h) coordinates takes the form

1
whxh)= ( Usz)ﬂﬂ Xo>%

s 11
et «gaent

% Yo ddh (4.20)

Equation 4.20 can further be reduced to

2 | +1+
wix h) = - r‘s)cl,é ! och  (4.21)
2AEs -11/x2(1+x)? +y2(1+h)?

The flexibility coefficients of a 4—node rectangular element
are then calculated directly using Eq. 4.14 and numerically
using Eq. 4.21. The stiffness matrix of the foundation soil
can be obtained by inverting the flexibility coefficient
matrix, [ fij ] as



[Gii] = [fii ] ' (4.22)
where,
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is the stiffness matrix of the foundation for a 4—node linear
rectangular finite element. These stiffness matrices for each
rectangular element are added to the corresponding stiffness
matrices of the plate structure and then assembled together
to result in the final stiffness matrix of the foundation—slab
system.

4.3.1 Soil ParametersEgand ny

The effectiveness of a foundation model, in addition to
a redlistic mathematical model, is also dependent on the
accurate determination of the soil properties from either
laboratory or field tests. If asoil medium is considered to be
a homogeneous isotropic linearly elastic continuum, then
| oad—di splacement relationship of every element within the
soil mass can be described in terms of the elastic constants
of the soil, E5 and n,. These are assumed to be intrinsic
properties of the soil and therefore independent of the
method of testing. However, it iswell known that the elastic
constants for certain soils are dependent upon a variety of
factors as the levels of isotropic and deviatoric stress applied
to the specimen, stress history, type and rate of application
of load, sample disturbance, moisture state, void ratio,
particle size, and structure.

4.3.1.1 Poisson’sRatio ng

Poisson’s ratio for a soil may be evaluated from the
ratio of the radial strain to axial strain from a triaxia
compression test. It is found that, in general, the test
procedure influences the value of Poisson’s ratio and the
values determined by triaxial compression tests vary with
the magnitude and range of the deviatoric stress (Bishop and
Henkel 1962). Some typical values for the Poisson’s ratio
aregivenin Table 4.1.
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4.3.1.2 Modulus of Elasticity Es

The modulus of elasticity is often determined from
unconfined, triaxial, or oedometric compression tests. Plate
loading tests and pressuremeter tests may also be used to
determine the in-situ modulus of elasticity of the soil. Some
typical values of the modulus of elasticity are shown in
Table4.2.

Table4.1. Typical Poisson’s Ratio Values (after Bowles 1988).

Type of Sail Ng
Clay, saturated 0.4—0.5
Clay, unsaturated 0.1—0.3
Sandy clay 0.2—0.3
Silt 0.3—0.35
Sand (dense) 0.2—04
gravelly sand -0.1—1.00
commonly used 0.3—04
Rock 0.1—04
L oess 0.1—0.3
Concrete 0.15
Ice 0.36

Table 4.2. Range of Values of E for Some Soils (after Bowles
1988).

Type of Soil E

ksf Mpa
Very soft clay 50—250 2—15
Soft clay 100—500 5—25
Medium clay 300—1000 15—50
Hard clay 1000—2000 50—100
Sandy clay 500—5000 25—250
Silty sand 150—450 5—20
L oose sand 200—500 10—25
Dense sand 1000—1700 50—81
L oose sand and gravel 1000—3000 50—150
Dense sand and gravel 2000—4000 100—200
L oess 300—1200 15—60
Silt 40—400 2—20




CHAPTERYV
PLATE THEORY AND
FINITE ELEMENT METHOD

5.1 Introduction

The finite element method may be regarded as a
generalization of standard structural analysis procedures, in
paticular the displacement method of analysis, which
permits the evaluation of stresses and strains in a structure.
The finite element method is a very powerful method for the
solution of differential equations that are in the fields of
engineering. In the method, the structural domain is simply
divided into regions (finite elements) of appropriate size and
shape with all the material properties of the original domain
being retained in the individua finite elements. By
assuming approximate displacement functions (interpolation
functions or shape functions) within an element, it is
possible to derive the stiffness matrix of a structure using the
principles of energy theorems or virtual work. If conditions
of equilibrium are applied at every node of the discretized
structure, a set of simultaneous algebraic equations can be
formed, and the solution of these equations gives all the
nodal displacements. The internal stresses are then obtained
using the calculated nodal displacement values. A more
complete treatment of the finite element method can be
found in numerous books such as Reddy (1993),
Zienkiewicz (1971), and Nath (1974).

Considerable research has been done for the
development of finite plate elements for the analysis of the
bending of plates. Researchers have developed quite a
number of eements (i.e, rectangular, triangular,
quadrilateral, etc.) with varying number of nodal points
along with different types of interpolation functions. The
aim of the researcher is to develop an element that has the
least number of coefficients and at the same time satisfies
the boundary conditions such as continuity of slopes.

In this chapter, the linear finite element models of the
classical (or Kirchhoff or thin) and shear deformation (or
Mindlin or thick) plate theories for the rectangular elements
will be presented. A simple four node-rectangular element
is chosen because of the restrictions applied by the
foundation model formulation, as it is discussed in Chapter
IV. A more complete treatment of the plate theories can be
found in numerous books such as Timoshenko and
Winowsky-Krieger (1968) and Ugural (1981). Although,
the thick plate theory is adopted for this research, the thin
plate theory is aso explained in order to understand the
differences between both theories.

5.2 Plate Material Properties

Before introducing the theory of plates along with their
finite element models, it is necessary to describe some
definitions and the constitutive equations that are related to
the plate formulations. The Mindlin plate employed in this
study is composed of linear elastic and orthotropic material.
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The linear elasticity is governed by Hooke's law, in which
the components of stresses are related to the components of
strains by elastic coefficients. The static equilibrium of the
stresses on an infinitesimal cubic element of dimensions dx,
dy, and dz is shown in Fig. 5.1 below. When the material
properties are different in different directions, then such
materials are called orthotropic.

s, + (Ts J12)dz

Sy, * (1s,/12)dz

Sy + (115,,/y)dy

e e T e N Sy + (Tsy/Ty)dy

Sy + (T8, /X dx
. S+ (115, My)dy
S, + (s, X)dx

Fig. 5.1. Equilibrium of a Cubic Element Under Applied Stresses.

If there are cases where the elastic properties of the
material are not the same in different directions (i.e., if the
material is anisotropic), then it is possible to represent
different elastic propertiesin different directions. However,
for the present case it is assumed that the material of the
plate has three planes of symmetry with respect to its elastic
properties. Hooke's law, which relates the stresses to strains
for an orthotropic material, can be written as

ISyl €y Cp Gy 0 0  0U6Kl

i a i

T Swi 3521 Ca Gz 0 0 0 G&y

[Szf €5 Cip Ci3 0 0 0Uef (5.1)
i y=é a_y :

Isel €0 0 0 0 G 006
i1Syp €0 0 0 0 0 CehSyp

where G; are the elastic coefficients. The coefficient matrix
G is symmetric (Reddy 1999). So, if three orthogonal
planes of material symmetry exist, then the number of elastic
coefficients is reduced to nine. The inverse of Eg. 5.1,
which relates the strain-stress relationship, is given by
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where the coefficients H;; are defined as
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where E, E, and E are Young's moduli in X, y, and z
directions respectively, nj; is Poisson’s ratio and defined as
the ratio of transverse strain in the jth direction to the axial
strain in the ith direction when stress is applied in the ith
direction, and Gy, Gy, and Gy, are the shear moduli in the x-
y, x-z, and y-z planes, respectively. Since the coefficient
matrix of Eq. 5.1 and its inverse (Eq. 5.2) are symmetric
(Reddy 1993), the following relationships exist between the
Y oung’s moduli and Poisson’ s ratios

r]_xyzr-l_y)< Ny :n_zx and %:n_zy (53)
E. Ey E, 7

<
N

As it can be seen from Eq. 5.2 and Eq. 5.3, there are
only nine independent material coefficients E, E, B, Gy,
Gx, Gz, Nyy, Nyz, @nd ny, for an orthotropic material. If the
material isisotropic, then E,=§ =E=E, Gy =G, =Gy, =
G, andny = Ny, =Ny, =n.

5.3 Finite Element Model of Kirchhoff Plate Theory

The displacement linear finite element model of the
classical plate theory is presented in this section. The finite
element model of the plate is described for a 4-node
rectangular element using the virtual work principles. This
element is one of the earlier finite element derived for the
analysis of bending of thin plates (Zienkiewicz 1971). The
element has four nodes and three degrees of freedom at each
node thus making a 12 degrees of freedom element. The
Kirchhoff plate theory has the following assumptions:

1) theplateisthinandlinearly elastic,

2) theplate undergoes small lateral deflections,

3) thetransverse normalsdo not elongate,

4) straight lines perpendicular to the mid-surface
before deformation, remain straight after
deformation, and

5) the transverse normals rotate such that they remain
perpendicul ar to the mid-surface after deformation.

The assumptions imply that the strain in the z direction is
zero (Fig. 5.2 below), that wis independent of z

=—= 4
= 0 (54)

According to Kirchhoff plate theory, the transverse shear
strains are zero as well

ladu  fwo lafv  wo
, = =C—+—==0, , == +—1= 5.5
& 23112 X g S ZQE Wz 9
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Integration of the terms in Eqg. 5.5 result in the following
displacement fields with the assumption that the in-plane
stretching of the plate is ignored, resulting in pure bending
only.

v=- z—W (5.6)

Thelinear strainsin the plate are defined as

Tu v ladu  vo
=—, =, =— + =, =€, = =0
S« ™ Sy T €, =6.=§,

- v (5.7)
2&ly  xg

The non-zero strains in terms of the transverse displacement
w, using Eq. 5.6 and Eq. 5.7, can be written as

(5.8)

Fig. 5.2. Kirchhoff Assumptions on Deformed Rectangular Plate.

5.3.1 Principle of Virtual Work

This principle relates the forces in equilibrium to the
corresponding displacementsin astructure. The name of the
principle is derived from the fact that a fictitious (virtual)
system of forces in equilibrium or of small virtua
displacementsis applied to the structure and these are related
to the actual displacements or actual forces, respectively
(Ghali and Neville 1978). The principle of virtua
displacements can be stated for atypical element asfollows

dveo dv, - dV =0 (5.9)

where dW is the virtual strain energy stored in the element
due to internal stresses and dWg is the work done by
externally applied loads. The internal strain energy can be
written as

d/V| = (‘;ZEJS,Jd\/ (510)
\Y



and the external work done by a distributed load f on a plate
element can be represented as

dWVg = fddxdy (5.11)
S

Then, Eq. 5.9 can be rewritten using the principles of virtual
displacements

= lde oS x +deyyS 4y +2de,s BV - g fdwaxdy (5.12)
\Y S

If the strains in Eq. 5.8 are substituted in Eq. 5.12 and the

variation dis carried on the w, the following relationship is
obtained

T;VSW AU %v dohatey (519

Asit was mentioned earlier, the transverse displacement w is
afunction of x and y only and is independent of z, therefore,
it is possible to rewrite the volume integral (Eq. 5.13) as
follows
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where h is the plate thickness and the values in brackets in
Eq. 5.14 above are the internal bending moments My, My,
and M,y (Fig. 5.3 below) per unit length along x and y axes
and defined as

OS 1,202 (5.15)
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For linear orthotropic slabs with the principal
directions of orthotropy coinciding with the x and y axes, the
bending moments are related to the derivatives of the
transverse deflectionwas

_ & Tw _ TPwo & Tw_ o Tw
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where Dy, Dy, Dy, and D,y are the orthotropic plate rigidities
(Timoshenko and Woinowsky-Krieger 1968)
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27

where E,, B, ny, Ny, and G are the orthotropic material
constants, and h the thickness of the plate.

M

O«

Fig. 5.3. Moment and Shear Force Resultants on a Rectangular
Plate Element.

The shear forces as shown in Fig. 5.3 can be calculated
from

™M, ™M, ™, ™,
=y 1 = +—¥» (518
Q x iy Q x Ty (>18)

Substituting Eq. 5.16 into Eq. 5.14 resultsin
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(5.19)
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Equation 5.16 is also called the weak form of the problem
(Reddy 1993). The differential equation governing an
orthotropic plate can be obtained from Eqg. 5.19 as follows

2 M M
il M"X+2ﬂ Xy+ﬂ

™ Ty ﬂyzyy +f=0 (5.20)

where the moments (My, Myy, and M,,) were defined above.

5.3.2 Displacement Function for the Finite Element
M odel

The rectangular bending element shown in Fig. 5.4
below with three degrees of freedom (one deflection and two
rotations) at each node, and thus constituting twelve degrees
of freedom for the rectangular plate, is selected for this
study. The displacement function therefore can be chosen as
a polynomia with twelve coefficients. The best arrangement
of the coefficients within the polynomial can be written as

W= G+ OX+ Gy + GX + Xy + Gy’ + 6 + oy
+ XY’ + CigY’ + C1Cy + CioX (5.21)



where ¢ are the coefficients to be determined.

Typical degreesof
freedom at anode

Fig. 5.4. Rectangular Bending Element.

Equation 5.21 can also be written in terms of interpolation
functions

vv(x, y): ignDifi (x, y) (5.22)
i=1

where D is the nodal values of the displacement w and its
derivatives, and fi(x,y) are the Hermite interpolation
functions that are readily available in the finite element
books such as the ones by Zienkiewicz (1971) and Reddy
(1993). If EQ. 5.22 is substituted for the displacement wand
the interpolation functions fi(x,y) for the variation of the
displacement dw into Eq. 5.19, the following relationship
can be obtained

[KKot={} (5.23)

where [K] is the stiffness matrix, {D} is the displacement
vector, and {f} is the load vector. These matrices are
defined as

K=o T Lo SPH I, IR  a
Vs ey g‘ﬂx w2 v g v Y (5.24)
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After Eq. 5.23 is solved for the displacements at every nodal
point of the discretized plate, the bending moments and
shear forces can be calculated using Egs. 5.16 and 5.18,
respectively, at the center of each rectangular finite element.
The most accurate results of the stresses (bending and shear)
for the linear rectangular elements can only be obtained at
the center of the elements (Reddy 1993).
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5.4 Finite Element Model of Mindlin Plate Theory

This theory is very similar to the Kirchhoff theory
except that it allows the transverse shear deformations
within the plate. Therefore, this theory is very suitable for
analysis of thick plates. The plate finite element model used
in this research is based on the Mindlin plate theory. In the
formulation of the plate element, the assumptions adopted in
the shear deformabl e plate can be summarized as:

1) theplateislinearly elastic,

2) theplate undergoes small lateral deflections,

3) transverse normalsdo not elongate,

4) straight lines perpendicular to the midsurface
before deformation, remain straight after
deformation, and

5) the transverse normals to the midsurface before
deformation remain straight but not necessarily
normal to the midsurface after deformation.

The last assumption results in a constant state of transverse
shear strains through the thickness and zero transverse
norma strains (Fig. 5.5 below). The most significant
difference between the classical and shear deformation
theories is the effect of including transverse shear
deformation on the predicted deflections. Therefore, the
strains
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] 5.27
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are not zero. To derive the finite element model for the
Mindlin plate, an approach similar to the Kirchhoff plate
theory istaken.

5.4.1 Displacement Function

Since the normal before bending does not remain
normal after bending, the slopes of the middle surface
cannot be used to define u and v displacements, contrary to
the Kirchhoff theory. Thus, two new parameters such as
rotations of the cross sections f, and fy are introduced into
the theory. The most important characteristic of the Mindlin
theory is that the rotations are no longer partial derivatives
of the lateral displacement function w. It is, therefore, only
necessary to use the Lagrange approximate functions as will
be discussed in the coming sections. Using these rotations,
the Mindlin thick plate theory is based on the following
displacement functions (Fig. 5.5)

u==#,, v==4, w=w(x, y) (5.28)

The bending strains for the thick plate can be written as
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The bending strains can also be represented in another form
if Eg. 5.27 is plugged into Eq. 5.28 as
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Fig. 5.5. Mindlin Assumptions on Deformed Rectangular Plate.

5.4.2 Application of Virtual Work
The virtual work statements described in Section 5.2.1
can be applied to the thick plate case as

0=dd§>$m+d@§w+ﬁ§>sxy+21§§ﬂ+21g¢syzbv glvfdx  (5.31)
\% S

If the linear bending strains in Eq. 5.30 are substituted in Eq.
5.31 and the variation dis carried on the fy, fy, and w, the
following relationship can be obtained
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where h is the plate thickness and the values in the brackets
in Eq. 5.33 above are the bending moments and shear
stresses (Fig. 5.3) defined as
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For linear orthotropic plates with the principal
directions of orthotropy coinciding with the x and y axes, the
bending moments and the shear stresses are related to the

displacements (w, fy, fy) as (Reddy 1993)
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where C, and C, are defined by
_5 _5
C,= EGXZh ad C, = gGyzh (5.36)

where the (5/6) term is the shear correction coefficient, and
Gy and Gy, are the shear modulus values in the x-z and y-z
planes, respectively. The shear correction coefficient
accounts for the difference between the distribution of
transverse shear stresses of the Mindlin plate theory and the
actual distribution of the stresses. Substitution of Eq. 5.35
into Eq. 5.33 resultsin
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Equation 5.33 can be partitioned according to the three
displacements (w, fy, fy) into three weak form (Reddy 1993)
eguations as
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The governing differential equations of the thick plate theory
can be obtained from (a), (b), and (c) of Eq. 5.38 as
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and the combination of the terms (1), (2), and (3) of Eq. 5.39
results in the same governing differential equation as for the
thin plate theory (Eq. 5.20)
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5.4.3 Interpolation Functions for the Finite Element
M odel

In the finite element model of the thick plates, the
first-order displacements (w, fy, fy) are involved, not their
derivatives. Therefore, the Lagrange interpolation functions
can be adopted for this plate. For a linear four-node
rectangular element, the interpolation function isin the form

y(x,y):cl+czx+ Cay+C,xy (5.41)

where ¢ the coefficients to be determined. The interpolation
functionsin terms of the natural coordinates (xh) are
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where the properties of each interpolation function are
shown in Fig. 5.6 below.

This element is very effective for the analysis of thick
plates. However, when analyzing thin plates, researchers
have shown that the element stiffness matrix becomes too
stiff (Reddy 1993). For this reason, it is recommended to
use reduced order schemes to integrate the equations
involving the transverse shear terms.

—_——
=3

2

Fig. 5.6. Interpolation Functions for 4-Node Linear Rectangular
Element.

The displacement function can be written as

m

m m
w=awy ;. f=day;, fy=dajy, (5.43)

wherey; are the Lagrange interpolation functions, which can
be found in the finite element books, and the displacements
(w, fx, fy) are defined in Fig. 54. In general, the
approximation functions for the w and (fy, fy) are
polynomials of different degree. However, the same
function can be adopted for both the displacement and the
rotations by employing reduced integration for the
evaluation of stiffness coefficients associated with the
transverse shear strains (Reddy 1993). If Eq. 543 is
substituted for the displacements (w, fy, fy) and the
approximation functions y; for the variation of the
displacements (dw, dfy, dfy) into Eqg. 5.37, the following
relationship can be obtained
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where [K'] are the sub stiffness matrices, {w, g%, ¢’} " is the
displacement vector, and {P} is the load vector and they are
defined as
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For the four-node linear rectangular element with the three
degrees of freedom (w;, fy;, fyi) at each node, the size of the
element stiffness matrix is12 © 12. After Eq. 5.44 is solved
for the displacements at every nodal point, the bending
moments and shear forces are calculated at the center of
each element using Eq. 5.35.

The Mindlin theory is adopted in this research for the
analysis of plates using the finite element method. For the
thick plates, the transverse shear deformations may be
significant, and in such cases it is better to use the Mindlin
plate. Actualy, the Mindlin plate can be used for both thick
and thin plates. If the plate is thin, then the use of reduced
integration scheme will overcome the problem of the
coefficients of the stiffness matrix being too stiff (Reddy
1993).



CHAPTER VI
DESCRIPTION OF COMPUTER PROGRAM

6.1 Introduction

The theoretical development of the finite element
method formulation of the elastic shear deformable plate
theory and the Boussinesq foundation model were
implemented into a linear finite element computer code
named RSLAB". This computer program was developed in
FORTRAN 77. The program is in modular format; in other
words, it consists of a number of subroutines, each of which
performs a particular task within the main body of the
program. There are practically no limitations on the number
of elements to be handled by the program; however, a fixed
number of elements and nodes need to be assigned by
adjusting the dimension statements within the program.

The theoretical background of the finite element
method, the elastic shear deformable plate theory, and the
elastic continuum foundation model have been described in
detail in the previous chapters (i.e., Chapter IV and V). This
chapter, thus, concentrates only on the FORTRAN
programming layout and structure of the program.

6.2 General Description

RSLAB" finite element method computer code can be
used to analyze ribbed slabs or slabs of constant thickness on
expansive as well as compressible soils. A transient analysis
is not considered and hence time dependency is not a factor
in this program. The program employs the small-
displacement theory and can consider orthotropic plate
behavior so that two different Young's modulus values can
be assigned to the reinforced concrete slab in two
perpendicular directions. The foundation soil is modeled
using the Boussinesq elastic continuum formulation. The
Boussinesq equation for surface deflection is used for
determining the stiffness matrix of the foundation soil. This
is different than the more commonly known Winkler (or
spring) model where the springs behave independent of each
other while in an elastic continuum model there is
interaction of neighboring soil elements.

The code accepts the vertica differential soil
movements, Y, over the range of edge moisture variation
distance, &y, as input data to represent the distortion modes
for expansive soils in calculating the displacements and the
stresses within the dlab. As it has been mentioned in the
previous chapters, there are mainly two types of critical
foundation soil distortion modes due to the soil swelling and
shrinking. These modes of distortion create soil surfaces of
mound shapes; edge lift and center lift cases. The shape of
the mounded soil surface varies according to an exponential
curve which describes the differential movement of the soil.
The differential movement is zero at a distance of g,from
the edge of the slab and increases to the full value of yp, at
the edge of the slab. The equation of the mounded surfaceis

32

..m

a® - X0
= T 6.1
T e o

where x is the distance measured inward from the edge of
the slab (Fig. 6.1). The mound exponent may be set by the
user in the program. The mound exponent that was used in
the PTI desigh method was 3 and was based upon the study
of the shape of natural soil surfaces, gilgai Spotts 1976;
Wray 1989) and analytical transient predictions of the soil
surface profiles (Wray 1978; Jayatilaka 1999; Gay 1994).

These values of y are the differential movements the
soil would have in the absence of the weight of the slab
which, because of its flexural rigidity, will suppress the
higher spots of the differential movement (Fig. 6.1). The
problem of soil-slab interaction is solved by superimposing
flexible slab on the unloaded differential soil profile.

il Differartid MoveratRdile
Madmum Differartial

A

EcteMddLreVaidion Disance
y=ym[(@myad™

Fig. 6.1. Soil-Sab Interaction Resulting in Differential Sab
Movement.

Gaps occur between the slab and the soil at some points
when the slab interacts with these mound shapes. The code
has an iterative scheme to check for the contact points.
Figure 6.2 shows the general flow diagram of the RSLAB"
finite element computer program.

6.2.1 Slab Geometry

Before running the program, it is necessary to sketch a
plan view of the slab, divide the slab into rectangular finite
elements of various sizes, and number the nodes and
elements. The program can handle any slab geometry
composed of rectangular finite elements. The nodal points
and the elements as well can automatically be generated
along a straight line provided that the nodal and element
numbering system isin a systematic and sequential order. In
the program, the slab geometry is defined by the global x
and y-coordinates of each nodal point. The use of
rectangular elements limits the size of elements to be
employed. If small elements are used in some portion of the
slab, the adjoining elements will be of the same width.

In the dlab, it is most efficient if the nodes are
numbered consecutively from bottom left to the right aong
the x-axis, starting from lower left corner, and then moving
to the right until all nodes in the slab are numbered. The



same numbering system can be followed for the elements.

This numbering system will allow the automatic generation
of the nodes and elements along a straight line, the
systematic numbering of element connectivity information.

The input data information, including the numbering system,
is explained with an example in Appendix C.

START
MESH2D, Problem
INPUT Type, Materia
Properties
Variable
Initiaizations

!

Forming Element and

ELKMFR, BOUDIA,

Global Stiffness BOUOFF, MINV,COHES,
Matrices SHPRCT
Boundary
Conditions BOUNRY
Solution for
Displacements and SOLVER
Rotations

Contact
ad
Convergence
Check

Final Solution for
Displacements, PSTPRC
Stresses, and Forces

Plotting with
MATLAB

END

Fig. 6.2. Flow Diagram of RSLAB" Finite Element Computer
Program.

6.2.2 Beams

Stiffening beams can be generated both in x and y-
directions. Within the program, beams are created by
increasing the depth of the slab along the corresponding
beam locations. The width of beams needs to match the
width of finite elements along the beam direction (see Fig.
6.3). There are no any restrictions for the spacing of beams,
they can be arranged with any spacing. The beam depths
can also vary from one beam to another.

33

6.2.3 Loading

The program can handle several different loading
conditions. It only considers uniformly distributed loads,
hence it does not accept point loads. However, point loads
can be considered as uniformly distributed loads on small
finite element.

A uniformly distributed load can be applied all over the
slab. Any line load can be considered as a distributed load
applied on small elements along a line in the same direction.
The code can also automatically calculate the weight of the
slab and apply it as adistributed load on the slab.

Slab Fnite Bemernt

Mesh

el
LR\ U

. finite
b =width of beam
and finite element etamert

Fig. 6.3. Beam and Finite Element Dimension Compatibility.

6.2.4 Evaluation of Contact

The program has an iterative scheme for checking the
contact points between the slab and the pre-deformed mound
shapes for the center and edge lift conditions. When gaps
are developed at some points, the stiffness coefficients of the
soil at those locations are set to zero. The program goes
through a number of iterations and checks for contact points
between two successive iterations. |f the number of contact
points between the previous and the current iteration are the
same, then the program has converged. It usualy takes
several iterations to converge to the real solution. These
types of problems are considered as non-linear in the
geotechnical engineering discipline due to the partial contact
conditions and the iteration schemes involved. The program
also permits incremental loading in the edge lift condition
when a convergence problem is encountered. In this case,
the unit weight of reinforced concrete is multiplied by an
integer number greater than one, and the program reduces
the unit weight to its real value while going through the
iterations for the convergence of the slab contact points.

6.2.5 The Output
The code calculates the displacements at each nodal

point and the general forces (i.e., stresses, moments, and
forces) at middle of each element. These values are printed
out with their corresponding global x- and y-coordinates. A
small MATLAB program was also developed to represent
the numerical values obtained from the program into three-
dimensional plots. The graphical plots help to interpret the
overall structural behavior of slab foundations.



6.3 General Outline of the Pr ogram

In general, afinite element computer program consists
of three basic parts: preprocessor, processor, and
postprocessor. A basic flow chart of the computer program
is given in Fig. 6.4 and each subroutine is described in the
coming sections.

In the preprocessor part of the program, the input data
of the problem are read in. This includes the geometry (i.e.,
finite element coordinates and dimensions), the data of the
problem (i.e., material properties for the slab as well as for
the foundation soil, loading conditions), and indicators for
various options (i.e., swelling, shrinking, and compressible
soil profile options).

In the processor part, al steps in the finite element
method, as discussed in Chapter V, are performed. These
include the generation of the element matrices using
numerical integration, assembly of element equations,
imposition of the boundary conditions, and the solution of
the simultaneous algebraic equations for the nodal values of
the displacements and rotations.

PREPROCESSOR MESH2D
BOUNRY
BOUDIA, MINV
BOUOFF, COHES
PROCESSOR ELKMFR [*
SHPRCT
SOLVER
PSTPRC
POSTPROCESSOR with
MATLAB

Fig. 6.4. Flow Chart of the Computer Program RSLAB".

In the postprocessor part of the program, the solution
for the moments and stresses are computed at the middle of
each element. For this part, the MATLAB option is aso
introduced to have a three-dimensional color plot of the
displacements, bending and twisting moments, and shear
forces.

A

6.3.1 The Program Subroutines

The subroutines (Fig. 6.3) used in the main program
have the following functions:

MESH2D: This subroutine is for generating the finite
element mesh (i.e., the global coordinates of the nodal points
and the connectivity array for general domains with four-
noded rectangular elements), element load information, and
coordinate information of the stiffening beams.

BOUNRY: This is to impose the specified
displacement type boundary conditions.

ELKMFR: This subroutine is for computing element
matrices and vectors. The element calculations are based on
linear rectangular elements with an isoparametric
formulation. The element matrices assembly is also
performed here. This subroutine calls in the SHPRCT,
BOUDIA, BOUOFF, MINV, and COHES subroutines.

SHPRCT: This subroutine evaluates the interpolation
functions and their derivatives with respect to global
coordinates for Lagrange linear rectangular finite elements
using the isoparametric formulation.

BOUDIA: This subroutine determines the flexibility
matrix coefficients of the diagona element for the
Boussinesq foundation model.

BOUOFF: This subroutine determines the flexibility
matrix coefficients of the off-diagonal element for the
Boussinesq foundation model.

MINV: This subroutine forms the stiffness matrix for
the Boussinesq foundation by inverting the flexibility matrix
as obtained from the BOUDIA and BOUOFF subroutines.

COHES: This subroutine is for caculating the
downdrag pressure on the stiffening beams caused by the
cohesive shear strength of the soil.

SOLVER: This subroutine solves a banded, symmetric
system of algebraic equations using the Gauss dimination
method.

PSTPRC: This subroutine computes the stresses,
moments, and shear forces at the middle of each element.
MATLAB is a commercially available software package in
the field of science and engineering. It manipulates matrices
and has very powerful features of plotting functions and
matrices. MATLAB can be adopted to plot nice color plots
of displacements and stresses as calculated from the
subroutine PSTPRC. A smal MATLAB program was
written to have the transition of the displacements and
stresses from numeric valuesinto MATLAB plots.



CHAPTERVII
APPLICATIONS OF THE COMPUTER PROGRAM

7.1 Introduction

The RSLAB" finite element computer program is
compared in this chapter using several example problems
from the PTI manual. The results of these problems are
compared with the solutions in the PTI manual. There are
no available computer codes, to the author’s knowledge, that
the results from the RSLAB" can be compared on a one-to-
one basis. The only comparison can be made with the
results from the PTI slab analysis and the opinions of some
key researchers and engineers who have very extensive
experience with slabs on expansive soil foundation systems.
From that perspective, the RSLAB" finite element computer
code is a unique analysis program for the ribbed slabs
resting on expansive soils.

7.2 Verification of the Computer Program

The linear elastic analysis verification of the program
mainly consists of solving 3 example problems contained in
the PTI slab manual and then comparing the results with the
PTI results. Details of the example problems can be found
in the PTI slab manual. These example problems are: (1) a
residential slab on expansive soil constructed in a dry
climate, (2) a residential slab on expansive soil constructed
in a wet climate, and (3) a residential slab constructed on a
compressible soil.

7.2. 1 Example One

A residential slab constructed on expansive soil is
analyzed for the displacements and stresses using the finite
element program developed in this study. This dlab is
constructed in a dry climate, where the Thorntwaite
Moisture Index is —16, in which the center lift condition
generally controls the flexural design (Lytton and Meyer
1971). However, the slab is being analyzed for both center
and edge lift conditions. The input parameters used for the
program are briefly summarized in Table 7.1 and the slab
geometry is depicted in Fig. 7.1. The slab is discretized into
246 rectangular finite elements with 282 nodal points. The
slab plan geometry for example threeis shownin Fig. 7.2.

7.2.1.1 Example One Center Lift Analysis

The residential slab example is analyzed with the case
of stiffening beams, as the beam locations are shown in Fig.
7.1, and with the case of constant thickness. The constant
thickness slab is obtained by converting the ribbed slab into
an equivalent thickness slab that has the same cross-
sectional moment of inertia as with the stiffening beam slab.
These two analyses help to explain the distribution of the
stresses within a constant thickness slab and aswell asa slab
with the cross stiffening beams both in x and y-directions.
The comparison of the displacements, moments in x-
direction, twisting moments, and shearsin the x-direction

Table 7.1. Input Parameter s for the Example Problems.

Example 1 Example 2 Example 3
Case Swelling, Shrinking | Swelling, Shrinking ~ Compressible Soil
Geometry Fig. 7.1 Fig. 7.1 Fig. 7.2
emn—center lift 5.5ft. 45ft
em—edge lift 2.5ft. 5.5ft
ym—center lift 3.608in. 0.9in.
ym—edge lift 0.752in. 0.706 in. -
Perimeter Load 1040 |b/ft 1040 Ib/ft 840 Ib/ft
LiveLoad 40 psf 40 psf -
Beam Depth 24in. (xandydir.) | 24in.(xandydir) 24in.(xandy dir.)
Beam Width 10in. (xandydir.) | 12in.(xandydir.) 10in.(xandy dir.)
Slab Thickness 4 in. 4in. 4in.
Ec 2.16E8 psf 2.16E8 psf 2.16E8 psf
ne 0.25 0.25 0.25
Es 144E5 psf 144E5 psf 144E5 psf
Ns 0.4 0.4 0.4
I8 150 pcf 150 pcf 150 pcf
Note: E.: Elastic moduli of the reinforced concrete slab,

Nn¢: Poisson’ sratio of thereinforced concrete lab,
Es: Elastic moduli of the foundation soil,
Nns: Poisson’ sratio of the foundation soil, and

g Unit weight of the reinforced concrete.

42 ft
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Fig. 7.1. Example One and Example Two Sab Geometry.
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40 ft
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50 ft

Fig. 7.2. Example Three Sab Geometry.

are depicted in Fig. 7.3, Fig. 7.4, Fig. 7.5, and Fig. 7.6,

respectively.

The complete set of

plots for the

displacements, moments, and shear forces for both ribbed
and constant thickness slabs are given in Appendix D.
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Fig. 7.5. Example One Center Lift Case, Twisting Moment.
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Fig. 7.6. Example One Center Lift Case, Shear in x-direction.

The comparison of results from the program and the
PTI manual for Example 1 are depicted in Table 7.2. Asitis
seen from Table 7.2, values for the maximum average
moments and shear forces from the ribbed slab analysis are
comparable with the PTI results. However, the results from
the constant thickness analysis are lower than the ones from
both the ribbed and PTI slab analysis. The differential
deflection values obtained from the program for both the
ribbed and constant thickness slabs are higher than the
differential deflections from the PTI example. But, the
program results in more conservative the D/L ratios. The
DIL ratios for the RSLABY analyses were found by
determining the largest departure, D, from the straight line
joining the high point to the low point. The length of the
linewastakenaslL.

Table 7.2. Comparison of Deflections and Stresses from Example
No. 1, Center Lift Case.

Constant Ribbed Slab ExampleNo. 1
Thickness (RSLAB" PTI Manual
Sab Analysis) (Design)
(RSLABM
Analysis)
Moment, Mx 4.79 11.52 11.509
(kips ft/ft)
Moment, My 5.17 9.83 12.18
(kips ft/ft)
Shear Force, Qx 0.93 1.85 2.105
(kips/ft)
Shear Force, Qy 1.03 1.74 1.965
(kips/ft)
Differential 1.01 243 x-direct. y-direct.
Deflection, d (1/2008) (2/701) 0.72 0.757
(in.) (DIL) (1/400)  (1/665)

Note: L indicates the distance between maximum and minimum
deflections.

The maximum average moment quantities shown in
Table 7.2 for the ribbed slab are determined by adding the
products of the moments in each plate element and dividing
the sum by the width of the slab. The same process is
followed to determine the maximum average shear forces.
The RSLAB" finite element computer program will enable
to demonstrate the soil-structure interaction behavior of the
whole slab, which is simply not possible with the PTI

method in which the overlapping method of rectangular
slabs misses to show the critical stress points within the slab.
As it is seen from Fig. 7.4, with the capability of handling
the ribbed slab analysis, the program can calculate the
moment concentrations within the beams and can predict
their locations. Structura engineers now will be able to
design the beams for these high values of moments
developed within the beams. Twisting moments can also be
calculated with the program. PTI method does not calculate
these moments. Figure 7.5 shows that twisting moments can
reach very high values, which need specia attention for
design purposes.

7.2.1.2 Example One Edge Lift Analysis

The constant thickness slab is obtained by converting
the ribbed slab into an equivalent thickness slab that has the
same cross-sectional moment of inertia as with the stiffening
beam slab. The comparison of the displacements, moments
in xdirection, twisting moments, and shears in the x-
direction are depicted in Fig. 7.7, Fig. 7.8, Fig. 7.9, and Fig.
7.10, respectively. The complete set of plots for the
displacements, moments, and shear forces for both ribbed
and constant thickness slabs are givenin
Appendix D.

The cmparison of results from the program and the
PTI manual for Example 1 are presented in Table 7.3 for the
edge lift analysis case. Asit is seen from Table 7.3, values
for the moments from the constant thickness slab analysis
are comparable with the PTI lesults. However, the results
from the ribbed slab analysis are much higher than the ones
from both the constant thickness and PTI slab analysis. The
program results in higher shear force values for both
constant thickness and ribbed slab analysis than the PTI
values. The differential deflection values obtained from the
program for both the ribbed and constant thickness slabs are
higher than the differential deflections from the PTI
example. But, the program results in conservative DL
ratios.
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Fig. 7.10. Example One Edge Lift Case Shear in x-Direction.

The RSLAB" computer program adopts the thick plate
(Mindlin plate) theory. As slab thickness increases shear
forces can become critical, ad the program predicts that
(Fig. 7.10) these forces can reach very high values at the
reentrant corner of the slab.

Table 7.3. Comparison of Deflections and Stresses from Example
No. 1, Edge Lift Case.

Constant Ribbed Sab ExampleNo. 1
Thickness (RSLAB" PTI Manual
Slab Analysis) (Design)
(RSLAB"
Analysis)
Moment, My 2.38 8.73 2.66
(kips ft/ft)
Moment, My 2.29 11.10 3.01
(kips ft/ft)
Shear Force, Qx 571 4.66 1752
(kips/ft)
Shear Force, Qy 3.10 4.37 1681
(Kips/ft)
Differentia 1.09 1.46 x-direct. y-direct.
Deflection, d (1/1366) (v1723) 0.231 0.219
(in) (DIL) (1/2182) (V/1315)

Note: L indicates the distance between maximum and minimum
deflections.

7.2.2 Example Two

Example two is very similar to Example one, the only
differences (see Table 7.1) being in ey, Ym and beam width
values. These parameters are among the most important
variables for the slab analysis as their effects can be
compared with the Example one results using Tables 7.4 and
7.5. This dab is also discretized into 246 rectangular finite
elements with 282 nodal points. The complete set of plots
for the displacements, moments, and shear forces for both
ribbed and constant thickness slabs as obtained from the
program are given in Appendix E.

Table 7.4 summarizes the analysis results from the
program for the center lift case. The program results in
comparable solutions for both constant thickness and ribbed
slabs. The PTI design values are conservative as its results
compared with the values obtained from the program. Due
to the same slab geometry shape as with Example one slab,
the soil-structure interaction behaviors for both examples are
very alike. However, asaresult of changesin the

parameters e, and y ,, and the difference in beam widths (see
Table 7.1), there are differences in stress concentration
values. The whole spectrum of the differences can be seen
from the plotsin Appendix D and Appendix E.

Table 7.5 gives the results obtained from the program
for the case of edge lift analysis. The program results in
lower solutions of the moments for the constant thickness
slab and higher solutions of the moments for the ribbed slab
as compared to the PTI results. The program results in
higher shear force values from both constant thickness and
ribbed slab analysis than the PTI solutions for the shears.

Example one and Example two edge lift analysis cases
indicate that the shear forces obtained by the program are
higher than the shear forces obtained from PTI analysis.

Table 7.4. Comparison of Deflections and Stresses from Example
No. 2, Center Lift Case.

Constant Ribbed Slab ExampleNo. 2
Thickness (RSLAB" PTI Manual
Sab Anaysis) (Design)
(RSLAB"
Analysis)
Moment, Mx 6.50 6.4 7.09
(kips ft/ft)
Moment, My 6.30 5.95 7.39
(kips ft/ft)
Shear Force, Qx 115 1.00 1.40
(kipg/ft)
Shear Force, Qy 114 0.61 1.53
(kipg/ft)
Differentia 1.195 1.465 x-direct. y-direct.
Deflection, d (1/1794) (1/860) 0454  0.757
(in.) (DIL) (1/634) (1/1056)

Note: L indicates the distance between maximum and minimum
deflections.

7.2.3 Example Three

The RSLAB" computer program can also be employed
for soil-structure interactions involving compressible soils
with full contact conditions between the slab and the
underlying foundation soil. The programis used to analyze
an example problem contained in the PTI manual. The
geometric shape of the slab is depicted in Fig. 7.2 and the
variables used in the program are summarized in Table 7.1.
The slab is discretized into 540 rectangular finite elements
with 592 nodal points. The complete set of plots for the
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displacements, moments, and shear forces for both ribbed Table 7.6. Conparison. of Deflections and Stresses from Example
and constant thickness slabs as obtained from the program No. 3, Compressible Soil.
are given in Appendix F Constant Ribbed Slab ExampleNo. 3
. _ 8
Table 7.6 summarizes the results obtained from the Thgge‘s (AF\{%‘QBS) P{ég%’:gal
program for the case of compressible soil with full contact (RLAB"
condition. The program predicts slightly higher moment Anaysis)
values than the PTI moment results. The program results in Moment, My 5.50 413 3.19
a higher shear force value in y-direction for the constant &‘Lpnigt?\ﬂ 470 403 3.4
thickness slab, while all other values are lower than the PTI (kips ftft) ’ ' ' '
solutions. Shear Force, Qx 0.97 0.50 0.849
(Kips/ft)
Table 7.5. Comparison of Deflections and Stresses from Example ?kTeZ/f'tz)orce' Qy 27 0.58 0.831
. |p
No. 2, Edge Lift Case. : Differential 0.88 1561 xedirect, y-direct,
Tﬁ]‘fgfﬁé‘; FEggLedAgBﬁ’ Eﬁ?ﬂﬂgz Deflection, d (1/1869) (U8s1) 0124 0124
Sab Analysis) (Design) (in) (D) (W3677)_(1/3870)
(RSLAB" Note: L indicates the distance between maximum and minimum
Anaysis) deflections.
Moment, My 2.36 8.40 472
(Kips ft/ft)
Moment, My 4.00 10.76 6.09
(kips ft/ft)
Shear Force, Qx 4.75 5.58 1.906
(Kips/ft)
Shear Force, Qy 4.87 4.26 1.828
(Kips/ft)
Differentia 1.09 1.46 x-direct. y-direct.
Deflection, d (1/1366) (1/1723) 0.330 0.307
(in)) (DIL) (1/872) (1/1641)

Note: L indicates the distance between maximum and minimum
deflections.



CHAPTER VIII
SUMMARY,
DESIGN TOOLSFOR SLABSON EXPANSIVE SOILS

8.1 Introduction

In this chapter, basic design aids for slabs on expansive
soils are summarized. These aids are based on some new
developments (Lytton 2001) in predicting the parameters for
volume change behavior of expansive soils and the finite
element computer program developed in this research study.
The development and application of the program have been
described in detail in previous chapters. As it has been
explained earlier, the main input data, regarding the
expansive soil behavior, to the program are the vertical soil
movement, Y, and edge moisture variation distance, g, It
is mainly for this reason that practical, easy-to-use design
tools are needed for geotechnical practitioners to predict
these variables accurately.

The geotechnical engineer should have the basic
knowledge of unsaturated expansive soils, their
mineralogical information and distribution, climatic
information of that particular location, and the effects of site
conditions as trees, flower beds and ponds in order to
calculate the y, and en parameters. The geotechnical
engineer usually provides these parameters to the structural
engineer who designs the slab for the possible two worst soil
support patterns; center lift and edge lift. The structural
engineer should be able to use such a slab analysis program
as developed in this study for these soil support conditionsto
predict the differential displacements, moments, and shear
forcesfor the design of the slab structure.

8.2 Soil Movement

The amount of swelling or shrinking that a soil profile
will undergo depends on the thickness of the layer, type of
clay mineral present, the surcharge pressure, and the severity
of climatic change. The expression relating the volumetric
change (Egs. 2.19 and 2.20) in a soil sample due to changes
in suction and mean principal stress is widely used to
calculate the vertical differential soil movement, v, The
design values of y, for the edge lift and center lift conditions
can be estimated either by the computer program VOLFLO-
2 or, in the absence of the computer program, by the soil
movement tables generated for the cases of lawn irrigation,
flower bed, and tree drying (Lytton 2001).

821VOLFLO-2

The computer program VOLFLO-2 is based on the
work by Naiser (1997) and was briefly described in Chapter
Il. This program can be used to calculate the y,, values for
both transient and equilibrium conditions. For instance, for
the given suction values the suction profiles and amount of
differential movements at any given nonth of the year can
be calculated for a given number of climatic cycles per year
as depicted in Fig. 8.1. The program can also consider the
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effect of vertical moisture barriers and the distance between
the edge of the slab and a tree (Fig. 8.1) to estimate the
vertical differential soil movements.
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Fig. 8.1. Atypical Output from VOLFLO-2 (from Lytton 2001).

8.2.2 Soil Movement Tables

Lytton (2001) provided some guide numbers to
estimate differential soil movements yn, in the form of tables
for different vegetation and soil surface conditions. The
guide numbers can be used in the following equation as

Vm=@ (Guide Number from Table 8.1) (8.1)
where g, is the volume change coefficient.
The guide numbers for the cases of lawn irrigation,

flower bed, tree drying case with and without vertical
moisture barriers are presented in tables in Appendix H.

Table 8.1. Soil Movement Guide Numbers for Sab Design (Lytton
2001).

Measured ym Guide Numbers

Suction pF

Depf;lt, m, Controlling Surface Suction, pF
m 25 2.7 3.0 35 4.0 42 45
27 +32 0 -4.1 -136 | -257 | -31.3  -400
30 +9.6 +5.1 0 -75 -182 | -231  -313
33 +17.7 +121 | +5.1 -2.6 -115 | -1568 -231
36 +27.1 +20.7 | +12.1 +1.6 -5.7 -94 -15.8
39 +38.1 +30.8 [ +20.7 | +7.3 -1.3 -41 -94
42 +50.4 +42.1 | +30.8 | +14.8 | +3.2 0 -4.1
45 +63.6 +54.7 | +42.1 | +23.9 | +96 +5.1 0

8.3 Estimating Volume Change Coefficient

Covar (2001) presented a method for the estimation of
the volume change coefficient, g, using Atterberg limits,
particle size classification, and the coefficient of linear
extensibility (COLE) values. The COLE test represents the
fractional change in a clod sample resulting from changes in
moisture content. Covar (2001) produced a series of charts
using a 6500 sample subset of 130,000 samples of the
Natural Resources Conservation Services data base. Figure



8.2 depicts the distribution d these soil samples on the
Casagrande’ s Plasticity Index versus Liquid Limit chart.
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Fig. 8.2. Expansive Soils Zones (from Lytton 2001).

The classification of soil samples, as shown in Fig. 8.2,
results in eight different data groups, each representing a
group with some mineralogical similarity. The volume
change guide number values were obtained for each data
group. The volume change coefficient, ¢, is then obtained
asfollows

¢h=[Percent Fine Clay] ~ [Volume Change Guide Number] (8.2)

The volume change guide numbersfor the first data
group (Fig. 8.2) are depicted in Fig. 8.3 and for the other
zones they are presented in Appendix I.
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8.4 Edge Moisture Variation Distance (en,)

The edge moisture variation distance depends on the
diffusion coefficient (ag) of the unsaturated soil. The
unsaturated diffusion coefficient is also a function of
suction, permeabilty, and the cracks in the soil. Dry soils
have a lower diffusion coefficient, and thus smaller edge
moisture variation distance. Similarly, wet soils have a
higher coefficient, and larger edge moisture variation
distance. The basic lab tests, namely the liquid limit, plastic
limit, plasticity index, percentage of soil passing No. 200
sieve, and percentage of soil of total sample finer than 2
microns are needed to estimate the edge moisture variation
distance. The edge moisture variation distances for both
center lift and edge lift cases can be estimated from Fig. 8.4.
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Fig. 8.4. Estimating Edge Moisture Variation Distance (from
Lytton 2001).

S, Slope of pF-vs-Water Contgnt Cuve

This edge moisture variation distance can be reduced to
a smaller distance with the use of vertical moisture barriers.
Lytton (2001) developed charts to estimate the effects of
vertical moisture barriers on the edge moisture variation
distances and provided the following figures (Fig. 85, Fig.
8.6, and Fig. 8.7) for variable depths of cracks from the
ground surface to adistance of T.
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8.5 Structural Analysis of Slab on Expansive Soil

Using the edge moisture variation distance, ey, and
differential soil movement, y, the structural engineer can
analyze the slab for displacements, moments, and shear
forces and in turn use these results for design of the slab. As
explained in the above sections, the geotechnical engineer
can provide the two important parameters (i.e., e, and ym)
using basic unsaturated soil mechanics principles and basic
laboratory test results.

The RSLAB" finite element computer program can
effectively be employed for analyses of slabs constructed on
expansive soils. This program can calculate displacements,
moments, shear forces based on a realistic soil-structure
interaction model.



CHAPTER IX
CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

An analytical study was undertaken in this thesis to
develop an improved analysis method for calculating the
performance of slabs on expansive soils. A Finite element
method formulation of dlabs on elastic continuum
foundations was developed to analyze this complex soil-
structure system. The shear deformable plate theory was
formulated for use with the finite element method and the
programming was done in FORTRAN. The program was
written such that it can accommodate the need of current
practice for slab desi,gns on problematic expansive soils.
The program RSLAB" developed in this study is improved
in several significant ways over the program that was used to
develop the PTI slab design method.

To more correctly model the soil-structure interaction,
the program can accommodate any practical geometric
shapes, stiffening beams, and variable loading conditions. In
addition, the calculation of twisting moments is possible
with this program. The program can also model the
anisotropic properties of the reinforced concrete slab in two
perpendicular directions, mainly x and y-directions. The
material properties for the reinforced concrete slab are
Young’'s modulus and Poisson’s ratio for the isotropic
analysis and Young's modulus in both x and y-directions,
Poisson’s ratio, and shear modulus values for theanisotropic
analysis.

The foundation soil was modeled as an elastic half-
space using the Boussinesg formulation. The foundation
model was incorporated into the program as surface finite
elements. Currently, due to the nature of the Boussinesq
equation, it is only practical to use rectangular finite
elements. The elastic continuum model is much more
realistic than the Winkler model because the continuum
model has the ability of expressing the effects of elements
on each other; this is not possible for the Winkler model in
which the springs behave independently of each other. The
material properties for the Boussinesq foundation model are
elastic soil modulus and Poisson’s ratio. These parameters
are more representative of the soil than the spring constant
value for the Winkler model, which depends on the size and
shape of the foundation.

The RSLAB" program was compared with the example
problems in the PTI manual. The analysis was done for a
flat slab and a ribbed slab having the same cross sectional
monent of inertia and the results were compared with the
results in the PTI manua. The following specific
conclusions can be made from the results of the program for
the center lift analysis (Table 7.2 and Table 7.4) based on
two example problems:

1. The program results in lower values of average
maximum moments and shears for both constant
thickness and ribbed slab as compared to the same
stresses in the PTI manual.

2. The differential deflections between the high and
low points of the slab as calculated from the
program for both flat and ribbed slab cases were
higher than the deflections from the PTI analysis,
but the curvatures were smaller, resulting in
conservative D/IL values.

3. More importantly, with the program it is now
possible to examine the overall behavior of the
slab and to locate the stress concentrations for the
purpose of design. This was not entirely possible
with the overlapping process of the PTI method,
which was missing the stress concentration values
and their locations. The analysis emphasizes that
the reentrant corners are the critical locations for
stress concentrations. It is also seen that the
stiffening beams are carrying most of the stresses.

4. With the program it is now possible to analyze and
design for the twisting moments, which are seen to
be critical at the corners.

Similarly, the following specific conclusions can be
made from the results of the program for the edge lift
analysis (Table 7.3 and Table 7.5) based on two example
problems contained in the PTI manual:

1. The program results in higher values of average

moments and shears for both constant thickness
and ribbed slab analysis, except the momentsin x-
and y-directions in the case of constant thickness
slab, as compared to the same stresses in the PTI
manual.

2. The differential deflections calculated from the
program for both constant thickness and ribbed
slab cases were higher than the deflections from
the PTI method, while resulting in conservative
D/L values.

These conclusions were made from analyzing only two
example problems from the PTI manual; therefore, it is very
difficult to generalize these conclusions for all slab types and
different input variables.

The third example problem from the PTI manual is
based on a compressible soil case, in which full contact
condition is assumed for the analysis. The analysis was
done for constant thickness slab and ribbed slab having the
same cross-sectional moment of inertia and the results were
compared with the results in the PTI manual. The following
specific conclusions can be made from the results of the



program for the analysis (Table 7.6) based on comparison
with the example problem from the PTI manual:

1

The program results in slightly higher values of
average moments for both constant thickness and
ribbed slab as compared to the same stresses in the
PTI manual. However, smaller maximum average
shear force values are obtained in both constant
thickness and ribbed slab analysis. However, there
is a very high peak value of shear force in the
constant thickness slab analysis.

The differential deflections calculated from the
program for both constant thickness and ribbed
slab cases were higher than the deflections from
the PTI analysis, but the curvatures were smaller,
resulting in conservative D/L values.

9.2 Recommendations for Future Enhancement of the

Program

The RSLAB" finite element computer program
developed in this thesis can further be improved with
additional work undertaken in the following research areas:

1

The number of degrees of freedom per node need
to be increased from 3 to 5 in order to
accommodate the analysis for the post-tensioning
effects as a result of normal in plane stresses.
With 5degrees of freedom, which will make it a
non-linear analysis, it is possible to have the
effects of large displacements, which is usually a
casein slabs on expansive soils.

45

For use in forensic investigations, the program
should be capable of representing cracks in the
slab. This can be done simply by altering the
modulus of the plate element perpendicular to the
direction of the crack.

Currently, the program uses only rectangular finite
elements. This is mainly because of the
singularity problem in the Boussinesq equation.
This could be overcome by a numerical integration
scheme that is only applicable to rectangular finite
elements. A similar integration scheme can be
developed for various finite elements as triangles,
quadrilaterals, etc.

Cross-anisotropic ~ soil  properties can be
incorporated into the elastic half-space foundation
soil model.

3-Dimensional versions of VOLFLO-2 or
FLODEF can be developed and can be coupled
with the RSLAB" program to represent more
realistic deformation patterns beneath the slab.
The current program can be modified to handle
various e, and y, vaues at various locations
within the slab.

For possible pavement applications, the program
needs to be equipped with coupled transient heat
and moisture flow analysis to handle curling and
warping as well asloss of support.
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APPENDIX A
THERMODYNAMIC VIEWPOINT OF THE
SOIL SUCTION CONCEPT

A.1 Introduction

The soil, water, and air mixture is a dynamic and,
chemically, a very complex system whose composition
reflects the many reactions that can proceed simultaneously
between the soil solid, water, and air. The net result of these
reactions may be considered as complex chemical
interactions affected by changes, mainly, in the amount of
water and air, and energy from the environment. It isto this
very complicated system that chemical thermodynamics
must be applied (Sposito 1981).

Study of thermodynamics of water in soil has been
performed since the 1900’s in the field of soil science.
Schofield (1935) proposed the concept of pF, the logarithm
of the specific Gibbs free energy, and established the energy
concept of water in soil. From the point of view of
thermodynamics, a soil is an assembly of solid, liquid, and
gaseous, and gravitationa and energy fields. These
characteristics define the thermodynamic soil system. If
chemical reactions are not of principal concern and if the
chemical composition of each phase in the soil need not be
known in detail, then the stresses in the pore water can be
described by relatively simple thermodynamic relationships
(Edlefsen and Anderson 1943). From this perspective, it is
assumed that the three components of the soil system do not
react chemically and do not segregate at any time, and thus
the soil is a homogeneous mixture. This point of view is
taken normally in soil physics.

A.2 Free Energy of Soil Water

Since thermodynamics deals with energy and its
transformation, the most useful thermodynamic function, as
far asthe soil moistureis concerned, isfree energy (Edlefsen
and Anderson 1943). The free energy of soil moisture
depends on the adsorptive force field that surrounds a soil
particle, the hydrostatic pressure on the soil moisture, the
dissolved material present, and the temperature. The free
energy of soil moisture will decrease with the presence of a
force field that surrounds clay soils and with the presence of
dissolved saltsin the soil water.

The free energy change of a system can be described
simply by a body of free water in contact with an
unsaturated soil and water flows from a body of free water
(whose absolute specific free energy is f;) into an
unsaturated soil (whose absolute specific free energy is f).
It is customary to use free, pure water under a pressure of 1
atmosphere as the zero point or datum for the free energy of
soil moisture. The absolute free energy f, of the unsaturated
soil moisture is less than that of free, pure water. Therefore,
the free energy Df of soil moisture in all unsaturated soils is
negative with respect to the commonly accepted datum. The
absolute free energy of the moisture in a comparatively dry

soil is less than the absolute free energy of that in a wet sail.
The free energy of the moisture is therefore aways more
negative in a drier soil than in a wetter soil. If two phases of
a system are in equilibrium with each other and are at the
same temperature and under the same pressure, then both
phases must posses the same absolute specific free energy.
T typical units of the free energy are in gmcm/gm or simply
cm and pF.

The energy status of water in soil with respect to that
of free and pure water has been expressed with the use of
Gibb’s free energy concept as defined by Edlefsen and
Anderson (1943) by

=—-e+Pv-Ts=h-Ts (A1)

where e is the internal energy of the system, P is the
pressure, v is the specific volume, T is the absolute
temperature, s is the entropy, and h is the heat content
(enthalpy).

The term entropy, s, which is used to describe and deal
with energy changes associated primarily with the
transformations of heat into other forms of energy in the
field of thermodynamics, is an important parameter in the
free energy description of soil moisture and is given by the
following relationship

B1

DS=sSg - Sp = o_qu (A2)
A

where A and B describes the two different states of the
system. However, the free energy concept combines al the
criteria and characteristics of entropy in the study of the
thermodynamics of soil moisture.

If Eg. Al is differentiated the following relationship is
obtained
df= —de+ vdP + Pdv—sdT— Tds (A3)
If the total work done by the system is represented by
dw = de + Tds= Pdv + dwp, (A4)
where dwp, is the mechanical work. Then, Eq. A3 becomes
df = -sdT + vdP - dwi, (A5)

For isothermal conditions (T = 0)

df = vdP - dwi, (A6)



and for constant pressure,
df = - dwp, (A7)

which indicates that the decrease in the free energy of a
system is equal to the work done by the system, excluding
the work done during expansion against constant presaure
(Edlefsen and Anderson 1943). As soil becomes more
unsaturated, the work done on the soil to remove the pore
water causes the free energy to decrease. Therefore, the free
energy of the pore water will be less than zero, if the free
energy of the pore water istaken asthe zero reference level.

If the mechanical work is taken as zero, then Eq. A6
becomes

- f, (A8)
For gases (where Pv = RT),

g P
Df = (‘)ﬂdP:RTIn—2 (A9)
R P P

Equation A9 can be used to determine the free energy
of the soil water relative to that of free and pure water by
comparing the vapor pressure of water in equilibrium with
the sail to pure water.
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P
Df = 3 dP = RT In— (A10)

Po o

where P is the vapor pressure of soil water, P, is the vapor
pressure of free and pure water, and P/P, is the relative
vapor pressure (or relative humidity) above the soil water
surface.

The separate effects of a number of variables including
temperature, pressure, concentration of solutesin pore water,
and water content on the partial free energy of soil water can
be investigated.  However, the measurement of P/P,
provides direct results accounting for the effects of al the
variables involved (Edlefsen and Anderson 1943). When
expressed with reference to a unit volume of water, Eq. A10
assumes the units of pressure

RT P
h, =——In— (A11)
Vi R

where h; is the total suction (cm or pF) and V,, is the molar
volume of water (n/kmol).



APPENDIX B
SOIL SUCTION MEASUREMENT WITH
THE FILTER PAPER METHOD

B.1 Calibration for the Suction Wetting Curve

The calibration for the suction wetting curve for filter
paper using salt solutions is based upon the thermodynamic
relationship between total suction (or osmotic suction) and
the relative humidity resulting from a specific concentration
of asalt in distilled water. The thermodynamic relationship
between total suction and relative humidity is given in Eq.
3.2 of Chapter 3. In this study, NaCl was selected as an
osmotic suction source for the filter paper calibration. Salt
concentrations from O (distilled water) to 2.7 molality were
prepared and filter papers were simply placed above salt
solutions (in a non-contact manner) in sealed containers.
The calibration test configuration adopted for this research is
showninFig. B1.

Lid —>| |

| R
VA |
jar
Plastic | | St
support solution

Fig. B1. Total Suction Calibration Test Configuration.

The filter paper and salt solution setups in the sealed
containers were put in a constant temperature environment
for equilibrium. Temperature fluctuations were kept as low
as possible during a two week equilibration period. A water
bath was employed for this purpose, in which temperature
fluctuations did not exceed + 0.1°C.

Before commencing the filter paper calibration
experiments and the soil suction measurements, all the items
related to filter paper testing were cleaned carefully. Latex
gloves and tweezers were used to handle the materials in
nearly al steps of the experiment. The filter papers and
aluminum cans for water content measurements were never
touched with bare hands because oily hands may cause the
filter papers to absorb more water. In addition, it is
suggested that the filter paper water content measurements
are performed by two persons in order to reduce the time
during which the filter papers are exposed to the laboratory
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amosphere and, thus, the amount of moisture lost or gained
during measurements is kept to a minimum.

B.1.1 Experimental Procedure for Wetting Curve

Calibration

The procedure that was adopted for the experiment is
asfollows:

1. NaCl solutions were prepared from 0 (i.e., distilled
water) to 2.7 molality (i.e., the number of moles of NaCl
in massin 1000 ml of distilled water).

2. A 250 ml glassjar was filled with approximately 150 ml
of asolution of known molality of NaCl. Then, a small
plastic cup was inserted into the glass jar to function as
a support for filter papers. Two filter papers were put
on the plastic cup one on top of the other. The glass jar
lid was sealed tightly with plastic tapes to ensure air
tightness. The configuration of the setup is depicted in
Fig. B1.

3. Step 2 was repeated for each different NaCl
concentration.

The glass jars were inserted into large plastic
containers and the containers were sealed with water proof
tape. Then, the containers were put into sealed plastic bags
for extra protection. After that, the containers were inserted
into the water bath for an equilibration period. After two
weeks of equilibrating time, the procedure for the filter
paper water content measurements was as follows:

1. Before taking the plastic containers from the water bath,
all aluminum cans were weighed to the nearest 0.0001 g
accuracy and recorded on a filter paper water content
measurement data sheet, similar to the one provided in
ASTM D 5298.

2. After that, all measurements were carried out by two
persons. For instance, while one person was opening
the sealed glassjar, the other person was transferring the
filter paper, using tweezers, into the aluminum can very
quickly (i.e., in a few seconds, usually less than 5
seconds). The lid was placed on each auminum can
immediately.

3. Then, the weights of each can with filter papers inside
were very quickly measured to the nearest 0.0001 g.

4. Steps 2 and 3 were followed for every glassjar. Then,
al the cans were put into the oven with the lids half-
open to alow evaporation. All filter papers were kept at
105 + 5°C temperature for 24 hours inside the oven.
This is the standard test method for soil water content
measurements. However, it is only necessary to keep
the filter paper in the oven for at least 10 hours.

5. Before taking measurements, the cans were closed with
their lids and allowed to equilibrate in the oven for
about 5 minutes. Then, a can was removed from the
oven and put on an aluminum block for about 20
seconds to cool down; the aluminum block acted as a
heat sink and expedited the cooling of the can. Thisis
to eliminate temperature fluctuations and air currentsin
the enclosed weighing scale. After that, the can with
dry filter paper inside was weighed to the nearest 0.0001
g very quickly. Thedry filter paper was taken out of the
can and the cooled can was also weighed very quickly.

6. Step 5 wasrepeated for every can.



B.1.2 Wetting Calibration Curve

A wetting curve was constructed from the filter paper
test results by following the procedure described above. The
curve obtained for Schleicher & Schuell No. 589-WH filter
papers using sodium chloride salt solutions is depicted in
Fig. B2. Figure B2 clearly shows the sensitivity of total
suction to very small changes in filter paper water content
values when the relative humidity approaches 100%, as
expected from the nature of Kelvin's equation (i.e., total
suction is egua to zero when relative humidity is 100
percent, fully saturated condition). From the figure, it is
seen that total suction decreases dramatically when relative
humidity approaches 100 percent.

B.2 Calibration for the Suction Drying Curve

Pressure plate and pressure membrane devices were
employed in the drying filter paper calibration. A schematic
drawing of a pressure plate or pressure membrane apparatus
is depicted in Fig. B3. For the drying suction calibration of
the filter paper, a contact path is provided between the filter
paper and the measuring device so as to eliminate the
osmotic suction component of total suction. In other words,
if transfer of the soil water is allowed only through fluid
flow, dissolved salts will move with the soil water, and the
measuring device will not detect the osmotic suction
component.

4.5 T
2 o Y Schleicher & Schuell | |
‘\‘ No. 589-WH Filter Paper
35 >

\g\
3 = \\
25 \.\ Wetting Curve ———
|h|= -8.247w + 5.4246

R*=0.9969 \5_

15 (15 < |h{ < 4.15) \

0.5 \

0.1 0.2 0.3 0.4 0.5 0.6
Filter paper water content, w

=

Total suction, |R| in log kPa

Fig. B2. Filter Paper Wetting Calibration Curve.

Pressure plate and pressure membrane devices operate
by imposing a suction value (i.e., applied air pressure minus
water pressure at atmospheric condition) on a given
specimen which can be a soil or filter paper. Thefilter paper
is put into the suction measuring device in a manner that
ensures good contact with the porous plate or cellulose
membrane. In this process, the main concern isto make sure
that an intimate contact is provided between the water inside
the filter paper and the water inside the porous disk so that
transfer of the water is alowed only through continuous
water films. To investigate the degree of contact between
the filter paper and porous disk, the testing procedure and
setup as depicted in Fig. B3 were undertaken in this study.
Three different soils (i.e., a fine clay, sandy silt, and pure
sand) were used in the calibration process of filter papersin
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order to investigate the role of soils in establishing a good
contact between the filter paper and porous disk.

Lid Air supply
Soil N Pressure
— u
samples =~ : ® © @ = chamber
Ceramic plate or Water

— «—
cellulose membrane r ——— reservoir

l Water outlet

(a) One filter paper between two larger size protective filter
papers embedded into the soil sample.

(b) One filter paper makes contact with the porous plate or
membrane and covered on top with a larger size protective
filter paper in the soil sample.

(c) One filter paper makes contact with the porous plate or
membrane and covered on top with two larger size
protective filter papers.

(d) One filter paper on the porous plate or membrane.

Fig. B3. Schematic Drawing of a Pressure Plate Device.

B.2.1 Experimental Procedure for Drying Curve

Calibration

The procedure that was adopted for the experiment is
asfollows:

1. Prior to each test, the porous disk or membrane and the
soils were saturated with distilled water at least one day
in advance, so that all the pores were fully saturated
with water.

2. The testing configuration as in Fig. B3 was established
using one of the soils (i.e., fine clay or sandy silt or pure
sand). Figure B3 explains how the filter papers, soil,
and protective papers were arranged in the experiment.
The soil specimens with the filter papers were placed on
the saturated disks and the level of distilled water on the
plate was raised enough to cover al of the filter papers.
All of the air bubbles were eliminated during placement
of the filter paper, soil, and protective paper
arrangement on the ceramic disk by carefully pressing
the bubbles out to the edges of each.

3. After the pressure chamber was tightened, with the
influence of the applied air pressure the water inside the
soil specimen and filter papers were forced out through
the porous plate or membrane and collected in a
graduated cylinder until a suction equilibrium between
the soil and filter papers and the applied air pressure
was established.

An equilibration period between 3 and 5 days is
commonly suggested for matric suction measurements using
pressure plates and membranes (ASTM D 5298; Houston et
al. 1994; Lee 1991). The equilibrating periods used for this
study varied between 3, 5, and 7 days depending on the
testing set up. For instance, when filter papers were
embedded in the soil, equilibrating periods were 7 days for
the fine clay and 5 days for the sandy silt set up, but the
equilibrating period was 3 days when filter papers embedded
in the pure sand or when only filter papers were used.
However, al the three soils were also tested with filter



papers inside in the same pressure chamber to check the
differences between the filter paper water contents. To
obtain the filter paper water contents, the same procedure
described in the Wetting Curve Calibration Procedure was
followed.

B.2.2 Drying Calibration Curve

A drying curve was established from the filter paper
test results by following the procedure described above. The
curve obtained for Schleicher & Schuell No. 589-WH filter
papers using both pressure plate and pressure membrane
devicesis depicted in Fig. B4. Each data point on Fig. B4 is
an average of at least three tests and each test ceta is an
average of at least four filter papers. The standard errors for
the straight line and curved portions of the drying curve are
0.135 and 0.116 log kPa units, respectively. The standard
error for the straight line portion of the wetting curve is
0.044 log kPa. With the pressure membrane the highest
matric suction obtained was 4,570 kPa and suctions below
150 kPa were obtained using the pressure plate apparatus.
The corresponding wetting calibration curve is also shownin
Fig. B4. It plots below the drying suction curve, as is
expected of the hysteresis process.

Very high filter paper water contents were obtained
when all the three soils were used as in the set up (a) as
shown in Fig. B3. However, the filter paper water contents
were all comparable as obtained from the set ups (b), (c),
and (d) as in Fig. B3. The results from (b) were dlightly
wetter than (c) and the results from (d) were slightly drier
than (c). In obtaining the calibration curve, the filter papers
from the set up arrangements (b), (c), and (d) were used.
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Fig. B4. Drying and Wetting Calibration Curves.

B.3 Soil Total Suction M easur ements

Glass jars that are between 250 to 500 ml volume size
are readily available in the market and can be easily adopted
for suction measurements. Glass jars, especially, with 3.5 to
4 inch (8.89 to 10.16 cm) diameter can contain the 3 inch
(7.62 cm) diameter Shelby tube samples very nicely. A
testing procedure for total suction measurements using filter
papers can be outlined asfollows:

B.3.1 Experimental Procedure
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1. At least 75 percent by volume of aglass jar isfilled up
with the soil; the smaller the empty space remaining in
the glass jar, the smaller the time period that the filter
paper and the soil system requires to come to
equilibrium.

2. A ring type support, which has a diameter smaller than
filter paper diameter and about 1 to 2 cm in height, is
put on top of the soil to provide a non-contact system
between the filter paper and the soil. Care must be
taken when selecting the support material; materials that
can corrode should be avoided, plastic or glass type
materials are much better for this job.

3. Two filter papers one on top of the other are inserted on
the ring using tweezers. The filter papers should not
touch the soil, the inside wall of the jar, and underneath
thelid in any way.

4. Then, the glassjar lid is sealed very tightly with plastic
tape.

5. Steps1, 2, 3, and 4 are repeated for every soil sample.

6. After that, the glass jars are put into the ice-chestsin a
controlled temperature room for equilibrium.

Researchers suggest a minimum equilibrating period of

one week (ASTM D5298; Houston et al. 1994; Lee 1991).

After the equilibration time, the procedure for the filter

paper water content measurements can be as follows:

1. Before removing the glass jar containers from the
temperature room, all aluminum cans that are used for
moisture content measurements are weighed to the
nearest 0.0001 g accuracy and recorded.

2. After that, all measurements are carried out by two
persons. For example, while one person is opening the
sealed glass jar, the other is putting the filter paper into
the aluminum can very quickly (i.e., in a few seconds)
using tweezers.

3. Then, the weights of each can with wet filter paper
inside are taken very quickly.

4., Steps 2 and 3 are followed for every glass jar. Then, al
cans are put into the oven with the lids half-open to
allow evaporation. All filter papers are kept at 105 +
5°C temperature inside the oven for at least 10 hours.

5. Before taking measurements on the dried filter papers,
the cans are closed with their lids and alowed to
equilibrate for about 5 minutes. Then, a can is removed
from the oven and put on an aluminum block (i.e., heat
sinker) for about 20 seconds to cool down; the
aluminum block functions as a heat sink and expedites
the cooling of the can. After that, the can with the dry
filter paper inside is weighed very quickly. The dry
filter paper is taken from the can and the cooled can is
weighed again in afew seconds.

6. Step5isrepeated for every can.

After obtaining all of the filter paper water contents an
appropriate calibration curve, such as the one in Fig. B4, is
employed to get total suction values of the soil samples.

B.4 Soil Matric Suction M easurements

Soil matric suction neasurements are similar to the
total suction measurements except instead of inserting filter
papers in a non-contact manner with the soil for total suction
testing, a good intimate contact should be provided between



the filter paper and the soil for matric suction measurements.
Both matric and total suction measurements can be
performed on the same soil samplein aglassjar as shown in
Fig. B5. A testing procedure for matric suction
measurements using filter papers can be outlined as follows:

B.4.1 Experimental Procedure

1. A filter paper is sandwiched between two larger size
protectivefilter papers. Thefilter papers used in suction
measurements are 5.5 cm in diameter, so either a filter
paper is cut to a smaller diameter and sandwiched
between two 5.5 cm papers or bigger diameter (bigger
than 5.5 cm) filter papers are used as protectives.

2. Then, these sandwiched filter papers are inserted into
the soil samplein avery good contact manner (i.e., asin
Fig. B5). An intimate contact between the filter paper
and the soil isvery important.

3. After that, the soil sample with embedded filter papers
is put into the glass jar container. The glass container is
sealed up very tightly with plastic tape.

4. Steps1, 2, and 3 are repeated for every soil sample.

5. The prepared containers are put into ice-chests in a
controlled temperature room for equilibrium.

Researchers suggest an equilibration period of 3 to 5

days for matric suction testing (ASTM D 5298; Houston et
al. 1994; Lee 1991). However, if both matric and totd
suction measurements are performed on the same sample in
the glass jar, then the final equilibrating time will be at |least
7 days of total suction equilibrating period. The procedure
for the filter paper water content measurements at the end of
the equilibration is exactly same as the one outlined for the
total suction water content measurements. After obtaining
al the filter paper water contents the appropriate calibration
curve may be employed to get the matric suction values of
the soil samples.

Two filter papers
for total suction

measurements
Ring support ——
Soil sample
Bring the samples
together for an
—

intimate contact in
matric suction
meastirements

One filter paper
in betweentwo 7
protective papers

Soil sample

Fig. B5. Total and Matric Suction Measurements.



APPENDIX C
PROGRAM RSLAB" INPUT DATA FORMAT

C.1 Input Data
All the variables described below, except TITLE, arein
accordance with the FORTRAN language integer and real
number specifications. In other words, all the variables
starting with I, J, K, L, M, and N are integer numbers and all
others are real numbers. The input data to the program can
be outlined as follows:
Data Card 1:
TITLE
Data Card 2:
KASE, NORTP, NPRINT, NEM, NNM
Data Card 3: SKIPthecard if KASE* 1.
MAXIT, MULT
Data Card 4: SKIPthecard if KASE 1 2.
MAXIT
Data Card 5:
MATLAB
(If MATLAB =0, gotothecard #7)
DataCard 6: If MATLAB® 0.
NCOLN, NROWN
MATNNX(I) (I=1, NCOLN)
MATNNY (I) (I=1, NROWN)
MATENX(I) (I=1, NCOLE)
MATENY (1) (I=1, NROWE)
Data Card 7:
DOI=1,K1
M, GLXY (M,1), GLXY (M,2)
ENDDO
DataCard 8:
DOI=1,K2
N, (NOD(N,I), I=1,NPE)
ENDDO
Data Card 9:
NBEAMS
Data Card 10: SKIP the card if NBEAMS = 0.
DO I=1, NBEAMS
MFIRST, MLAST, INCR, THK
ENDDO
Data Card 11:
NLOADS
Data Card 12: SKIP the card if NLOADS = 0.
DO I=1, NLOADS
LFIRST, LLAST, LINC, PLODS
ENDDO
Data Card 13:
NTEL
Data Card 14: SKIP the card if NTEL = 0.
DO I=1, NTEL
NT, UPRES(NT)
ENDDO

DataCard 15: SKIPthecard if KASE 1 1.
MDISP
MLINE(]) (I=1, MDISP)
VEXP(l) (I=1, MDISP)
DO I1=1, MLINE(I)
MFIRST, MLAST, MINC
ENDDO
NINLDS
(If NINLDS =0, gotothe Card # 16)
DO I=1, NINLDS
L, VIDS(L)
ENDDO
Data Card 16: SKIPthecard if KASE 1 2.
NDISP
NLINE(I) (I=1, NDISP)
VSHR(I) (I=1, NDISP)
DO I=1, NLINE(I)
NFIRST, NLAST, NINC
ENDDO
MINLDS
(If MINLDS =0, go to the Card # 17)
DO I=1, MINLDS
K, VIDS(K)
ENDDO
DataCard 17: SKIP the card if NORTP! 1.
El, E2, ANU12, G12, G13, G23
Data Card 18: SKIPthecard if NORTP = 1.
E, ANU
Data Card 19:
YMS, PRS
Data Card 20:
KCOHES
Data Card 21: SKIP the card if KCOHES = 0.
COHESN
Data Card 22:
UWRC, DSLOAD, STHIK

The input variables to the program, as explained above
in asystematic order, have the following meanings:

TITLE: Title of the problem being solved (maximum
80 characters).

KASE: An indicator for the type of the problem being
analyzed. KASE = 0 — Compressible soil, KASE = 1 —
Swelling soil (Edge Lift Case), and KASE = 2 — Shrinking
soil (Center Lift Case).

NORTP: Anindicator for the orthotropic plate analyzes
option. NORTP = 1 - Orthotropic plate analysis and
NORTP! 1-Isotropic plate analysis.

NPRINT: An indicator for printing certain output.
NPRINT = 0 — Not to print the element matrices and vectors,
first element dimension, soil element flexibility and stiffness
matrices, total element stiffness matrix, global matrices,



boundary condition information, number of integration
points. NPRINT =1 — Not to print the information in the
NPRINT = 0 case except the soil element flexibility and
stiffness matrices and total element stiffness matrix. The
NPRINT = 0 or 1 will, however, print the basic solution
output such as the element coordinates, material properties,
displacement and stress results.

NEM: Number of the elementsin the mesh.

NNM: Number of nodesin the mesh.

MAXIT: Maximum number of iterations allowed for
the convergencein both KASE =1 and 2.

MULT: A multiplication factor to increase the density
of reinforced concrete at the beginning of the iterations to
establish a smooth convergence for KASE = 1 problems.
The increased density will reduce to its real value at the end
of convergence. If a zero value is assigned to MULT (i.e,,
MULT = 0), then this option will be skipped.

MATLAB: This is an indicator to obtain such output
files that are suitable for postprocessing using the
commercially available MATLAB software. To assign a
zero valueto MATLAB will eliminate this option.

NCOLN: Number of columns of nodes in the finite
element mesh (see Fig. C1).

NROWN: Number of rows of nodes in the finite
element mesh.

MATNNX(I) (I=1, NCOLN): The array which stores
the nodal numbers along arow in the x-direction.

MATNNY () (I=1, NROWN): The array which stores
the nodal numbers along a column in the y-direction.

NCOLE=NCOLN-1

NROWE = NROWN -1

MATENX(l) (I=1, NCOLE): The array which stores
the element numbers along arow in the x-direction.

MATENY (I) (I=1, NROWE): The array which stores
the element numbers along a column in the y-direction.

GLXY (M,1): The global x-coordinate of the node M.

GLXY(M,2): The global y-coordinate of the node M.
If the distances between the nodes along a straight line are
equal and the nodes are consecutively numbered in an
increasing order, then the coordinates of the middle nodes
can automatically be generated just by entering the
coordinates for the first and the last node on that line.

NOD(N,I) (I=1,NPE): The element connectivity for the
Nth element. NPE is the number of nodes per element,
which is always 4 (NPE = 4) in this program. The element
connectivity information should be provided in a counter-
clockwise direction starting from the lower |eft corner node
for each element. It is suggested that the nodes and elements
on amesh be numbered as shown in Fig. C1. If the elements
are consecutively numbered in an increasing order on a
straight line, then the element connectivity arrays of the
middle elements can automatically be generated just by
entering the element connectivity information for the first
and the last element on that line.

NBEAMS: Number of stiffening beams both in x and
y-directions on different uniformly numbered elements. In
other words, although only one beam lies on the elements 1,
5,9, 13, 23, 33, and 43 (Fig. C1), it is considered as two
beams for the input data so that a systematic creation of the
inter-elements can be achived. For instance, for the beam
mentioned above, the increment between the elements 1, 5,
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9, and 13 is the same which is 4, and the increment between
the elements 13, 23, 33, and 43 is the same which is 10.
Therefore, when assigned such a beam it is necessary to
input the first element number, the last element number, and
the increment between the elements. Then, one should
provide the following information for the mentioned beam
asfollows:

1,134

13, 43, 10

on two different lines.
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Fig. C1 ATypical Finite Element Mesh.

MFIRST: The first element number for the beam
information.

MLAST: The last element number for the beam
information.

INCR: The increment between the elements on the
sameline.

THK: Thickness of the beam (without considering the
thickness of the slab).

NLOADS: Number of uniformly distributed pressures
both in x and y-directions on different uniformly numbered
elements lie on a straight line (line-elements). The
numbering system of the elements on which the pressures
are applied is exactly the same as in the case for the beams
as described in NBEAM S section above.

LFIRST: The first element number on which the
pressure isapplied.

LLAST: The last element number on which the
pressureis applied.

LINC: The increment between the elements on the
sameline.

PLODS: The amount of the pressure being applied.

NTEL: The total number of individual pressures being
applied on different individual elements.

UPRES(NT): The amount of pressure being applied on
element number NT.

MDISP: Number of different displacements (ym values
from VOLFLO) for the edge lift case (KASE = 1).



MLINE(l) (I=1, MDISP): Number of lines, which
connect the nodal points, having the same displacement
values and the same increment values. For instance, the line
that connects the nodal points1, 6, 11, 16, 27, 38, 49, and 60
(Fig. C1) is considered to be two lines of having different
increments. This part has the same logic of automatic
creation of the nodal points or element numbers as
mentioned under sections NBEAMS and NLOADS. For the
line mentioned above, the increment between the nodal
points 1, 6, 11, and 16 is the same and is 5, and the
increment between the points 16, 27, 38, and 49 is the same
and is 11. Therefore, when such alineis assigned it is only
necessary to input the first nodal number, the last nodal
number, and the increment between the points. Then, one
should provide the following information for the line as
follows:

1,16,5
16, 49, 11

VEXP(l) (I=1, MDISP): The vertical displacement
value, which is a positive number, corresponding to the Ith
line created in section MLINE.

MFIRST: The first nodal point corresponding to the Ith
line of section MLINE.

MLAST: The last nodal point corresponding to the Ith
line of section MLINE.

MINC: The increment between two consecutive nodal
points corresponding to the Ith line of section MLINE.

NINLDS: Total number of nodal points considered for
individual displacement locations (nodal points). Thisisto
input displacements, as obtained from VOLFLO, at some
particular nodal points within &, (edge moisture variation
distance) distance.

VIDS(I): The vertical displacement value (KASE = 1)
at Ith node. Itisapositive number.

NDISP: Number of different displacements (ym, values
from VOLFLO) for the center lift case (KASE = 2).

NLINE() (I=1, NDISP): Number of lines, which
connect the nodal points, having the same displacement
values and the same increment values. For instance, the line
that connects the nodal points 1, 6, 11, 16, 27, 38, 49, and 60
(Fig. C1) is considered to be two lines of having different
increments. This part has the same logic of automatic
creation of the nodal displacement values of section MLINE.
For the line mentioned above, the increment between the
nodal points 1, 6, 11, and 16 is the same and is 5, and the
increment between the points 16, 27, 38, and 49 is the same
and is 11. Therefore, when such alineis assigned it is only
necessary to input the first nodal number, the last nodal
number, and the increment between the points. Then, one
should provide the following information for the line as
follows:

1,16,5
16, 49, 11

VSHR(I) (I=1, NDISP): The vertica displacement
value, which is a positive number, corresponding to the Ith
line created in section NLINE.

NFIRST: The first nodal point corresponding to the Ith
line of section NLINE.

NLAST: The last nodal point corresponding to the Ith
line of section NLINE.
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NINC: The increment between two consecutive nodal
points corresponding to the Ith line of sectionNLINE.

MINLDS: Total number of nodal points considered for
individual displacement locations (nodal points). Thisisto
input displacements, as obtained from VOLFLO, at some
particular nodal points within &, (edge moisture variation
distance) distance.

VIDS(1): The vertical displacement value (KASE = 2)
at Ith node. It isapositive number.

E1: Young's moduli of the reinforced concrete slab in
the global x-direction (orthotropic plate analysis).

E2: Young's moduli of the reinforced concrete dab in
the global y-direction (orthotropic plate analysis).

ANU12: Poisson’s ratio for the reinforced concrete in
the x-y plane (orthotropic plate analysis).

G12: Shear modulus for the reinforced concrete slab in
x-y plane (orthotropic plate analysis).

G13: Shear modulus for the reinforced concrete slab in
x-z plane (orthotropic plate analysis).

G23: Shear modulus for the reinforced concrete slab in
y-z plane (orthotropic plate analysis).

E: Elastic modulus for the isotropic reinforced concrete
slab.

ANU: Poisson’s ratio for the isotropic reinforced
concrete slab.

YMS: Elastic modulus for the foundation soil.

PRS: Poisson’ sratio for the foundation soil.

KCOHES: An indicator for computing the downdrag
force applied on the faces of the stiffening beams by the
cohesive soil. KCOHES ! O indicates the option for
considering the pressure applied on the beams by the soil.

COHES: Cohesive shear strength of the soil.

UWRC: Unit weight of the reinforced concrete slab.

DSLOAD: Uniformly distributed load all over the slab.

STHIK: Thickness of the slab.

C.2 Input File
An example problem, Center Lift Case.
TITLE
2,0,0,52,70 KASE, NORTP, NPRINT, NEM, NNM
10 MAXIT
1 MATLAB
11,8 NCOLN, NROWN
16,17,18,19,20,21,22,23,24,2526  MATNNX(I) (1=1, NCOLN)
1,6,11,16,27,38,49,60 MATNNY (1) (I=1, NROWN)
13,14,15,16,17,18,19,20,21,22 MATENX(I) (I=1, NCOLE)
1,5,9,13,23,33,43 MATENY (1) (I=1, NROWE)
1, 0.0, 00 M, GLXY(M,1), GLXY (M,2)
5 4.0, 00
6, 0.0, 1.0
10,4.0, 1.0
11,0.0, 2.0
15,4.0, 2.0
16,0.0, 3.0
26, 10.0, 3.0
27, 00, 40
37, 10.0, 4.0
38, 0.0, 5.0
48, 10.0, 5.0
49, 0.0, 6.0
59, 10.0, 6.0
60, 0.0, 7.0
70, 10.0, 7.0

1, 1, 2 7, 6 N, (NOD(N,1), 1=1,4)



4
, 6,
, 9, 1
, 11, 1
12, 14, 1
13,16, 1
22,25, 2

2

3

3

1

[{oJNo &) ¥ ~N

37, 36
, 39, 38
, 48, 47

5

7

0

2

5

7, 28 27
6
23,27,28

32, 36, 37

33, 38, 39, 50, 49
42,47, 48, 59, 58
43, 49, 50, 61, 60
52, 58, 59, 70, 69
7

1, 4 1,05
16,22, 1,05
43,52, 1,05

1, 9 405
13,33,10,0.5

4, 12, 4,05
32,42, 10,05

7

1, 4, 1, 100.0
16,22, 1, 100.0
43,52, 1, 100.0
1, 9 4, 1000
13, 33,10, 100.0
4, 12, 4, 100.0
32,42, 10, 100.0

0
9,

NBEAMS
MFIRST, MLAST, INCR, THK

NLOADS
LFIRST, LLAST, LINC, PLOADS

4
6, 50.0
34,75.0

41, 85.0
27,100.0

2

7 3

0.15 0.10
1, 51
20,16, 1
60, 70, 1

1, 16, 5
27,49, 11
10,15, 5
37,59, 11

7, 17, 5
28,50, 11
51,58, 1

1

30, 0.12
2.16E8, 0.25
1.44E5, 0.40
0

150.0, 25.0, 0.20

NTEL

NT, UPRES(NT)

NDISP

NLINE() (I=1,NDISP)
VSHR(l) (I=1,NDISP)
NFIRST, NLAST, NINC

MINLDS
K, VIDS(K)
E, ANU
YMS, PRS
KCOHES

UWRC, DSLOAD, STHIK
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APPENDIX D
EXAMPLE ONE DISPLACEMENT AND STRESSPLOTS



E;;r\-'pk 1: Cantar Lit {am=5.50, ym=3608in.), Displacemants {in] Evampla 1: Genter LA (em=5.50, yrm=3.E06in 1, Displac emerts (n)

Dleplacernents (n.)

Lid -1

a. Top View . [sometric View

Fig. D1. Example One Center Lift Case, Ribbed Sab, Displacements.

Examnple 1 Cemer Lifi ([em=55f, yre=3080Ein.], Displacements §r ). [ET) Example 1 Canter Lf (em=5.54, ym=3.E08in.), Displacemems fin-](ET
A0 -

=
E
E
]
o
n
=5
=

a. Top View

Fig. D2. Example One Center Lift Case, Flat Sab, Displacements.

Example 1: Center Lifl {om=6 &, yr=3608in.], Momant, M= (kips RA) Example 1: Certer Lift (er=5.5A, yme=3808in.), Moment, iz (kip= A4}
40 = _ie

Plomenl, e [kips ff)

a. Top View b. Isometric View

Fig. D3. Example One Center Lift Case, Ribbed Sab, Moment in x-Direction.




Example 1: Conter Lit {sm=5.5, ym=3.E03in.}; Momant, Mx ikips H], (T Example 1: Carter Lit {em=5.5, ym=3.E08in.}; Momant, Mx kips fH], (ZT)
40 - ] i

Mament, M Kips )

Fig. D4. Example One Center Lift Case, Flat Sab, Moment in x-Direction.

Example 1: Center Lit ferm=5.51, yro=3 B0, Momerd, My kip= fuft) Example= 1: Center Lit jerm=5.58, ym=3.E08in), Momerd, My kips fift)

40

Womart, My [kips )

p View b. Isometric View

Fig. D5. Example One Center Lift Case, Ribbed Sab, Moment in y-Direction.

Example 1: Center Lit {sm=5.5, ym=3.E03in.;, Momant, by (kips i), (CT)
A0y

Example 1: Center Lit {sm=5.5, ym=3.E08in.}; hMomant, by (kips iF), (CT)

Womank, My [kips £
£u =

o

ta
TR M

a. Top View

Fig. D6. Example One Center Lift Case, Flat Sab, Moment in y-Direction.
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Example 1: Certer Lk (em=5.5%, ym=3.E08in.}), Moment, ey (ips pla-1: Canter Lif

a. lop View . [SOMELric View

Fig. D7. Example One Center Lift Case, Ribbed Sab, Twisting Moment.

Example 1: Canter Lift 3, Example 1. Cenlar Lift (er=E5, ym=3. E1in.}; Momant, b

a. Top View . [sometric View

Fig. D8. Example One Center Lift Case, Flat Sab, Twisting Moment.

Ezample 1: Certer Lit (em=5.5%, ym=3.E608i ear Force, Qs | =z 1. Shear Foree, O
A0

a. Top View . ISOmetric View

Fig. D9. Example One Center Lift Case, Ribbed Sab, Shear in x-Direction.




npke 1: Cerdar Lifl (am=65, y Hin.); Shear Forca, Gr ops A, |

a. 1op View . 1SOMetric View

Fig. D10. Example One Center Lift Case, Flat Sab, Shear in x-Direction.
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z a0 Z - e e Shoar Fo i
pla 1: Cantar Lift [ar=E S 0 Evampla 1: Centar Lifl (am=5 51, y 1. Shear Forca, O

b. IsorlcView

a. lop View

Fig. D11. Example One Center Lift Case, Ribbed Sab, Shear in y-Direction.

a. Top View b. Isometric View

Fig. D12. Example One Center Lift Case, Flat Sab, Shear in y-Direction.




mpla 1; Edga Li bl 8 B mplke 1: Edge Lifl [emre25 1 752in.] placement=

a. [op View . [SOMELric View

Fig. D13. Example One Edge Lift Case, Ribbed Sab, Displacements.

ple 1: Edge Lit; {em=2.5%, ym=0 Di=placement= fin.), [

Displacernan!

a. Top View b. Isometric View

Fig. D14. Example One Edge Lift Case, Flat Sab, Displacements.

Exzampla 1: Edga Lt [em=2.58, y 7 1, tomant, kix
A0

a. 1op View . [sometric View

Fig. D15. Example One Edge Lift Case, Ribbed Sab, Moment in x-Direction.




Examnple 1: Edge Lifi (ere2 5, yre=0 75210 ], Moment . Me (kips i), (CT) Example 1: Edge Lifi (amr=25, yred. T52in.); iMomant, Me Jops fitt), [CT)
40

| . k|

&

=]
I

Womert, Mx [kips £}

£ & 4 o
S R

a. Top View

Fig. D16. Example One Edge Lift Case, Flat Sab, Moment in x-Direction.

Evampla 1. Edga Lift [am=25f, ym=0752n.), tdomant, My kips A0 Evample 1. Edga Lift [am=25f, yr=0752n.), tomant, My kips A0

=
= L
i
=
=
=
=
& .
=
=
=

Enample 1; Edpe Lift [ern=2 5, ym=0752n], Momerd, My kips fif), (ET)

t {40

i

Mloment, ky fapes 4]

a. Top View

Fig. D18. Example One Edge Lift Case, Flat Sab, Moment in y-Direction.




Examnple |: Edge Lift ferm=2.5f, yr=07 Mamert, May il Exarnpla 1: Edga Lit (sm=2.5%, ym=0.753in.), Momant, i

o
-]

TR

a. Top View

Fig. D19. Example One Edge Lift Case, Ribbed Sab, Twisting Moment.

Exampla 1: Edga Lit B, prm=il] e, My (kips fit),

a. Top View D. [sometric View

Fig. D20. Example One Edge Lift Case, Flat Sab, Twisting Moment.

Example 1: Edge Lift (erm=2 5, yr=0.752i0.] ar Force
A0

a. Top View . sometric View

Fig. D21. Example One Edge Lift Case, Ribbed Sab, Shear in x-Direction.




Examnple 1: Edge Lt fem=2.5, yrm=(.7 hear Force, Qx (k

Exampla-1: Edga L# |; i, F ] zar Forca i} Examnpla 1: Edga Lik {en
A0

b. ImetricView

a. Top View

Fig. D23. Example One Edge Lift Case, Ribbed Sab, Shear in y-Direction.

Example 1: Edge Lt (em=2.5, yrn= i F o, Oy [kips sample 1. Edge Lift ferm=25, =

a. lop View b. Isometric View
Fig. D24. Example One Edge Lift Case, Flat Sab, Shear in y-Direction.
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Example 2: Gerder Lifi (emed. 56 w0 3in.); Displacements §n) Example 3: Cardar Lifl (sr=4.5A  yr=09in.); Displacernants f§in ]
A0;

Dusplacamants [in.)

Exampla 2: Canter Lift [arm=4 Sf, ym=013in:}, Displacomants §n.] (CT) Example 2: Contar Lit fem=4.5¢, ym=1.9in), Displacemaniz [in.) (CT)
A0

-
2

-
£
a
g
E-d3
&
g
L
=
]

a. Top View b. Isometric View

Fig. E2. Example Two Center Lift Case, Flat Sab, Displacements.

Example 2: CerterLit (2m=4.5¢, ym=0.9in], Momert, Mx (kips M) Example 2; Cerver Lifl (am=4.5A, yr=0Sin.), Momant, ke (kips A
40 - =

il

s fi

Fomerd, Mx ki

b. Isometric View

. Example Two Center Lift Case, Ribbed Sab, Moment in x-Direction.




Example 3 Corter Lit jem=4 5, ym=0.9in; Momen, bix fips f) (0T Example 1. Cortor Lit fem=4.5¢, ym=0.9in); Moment, bie Jops i) CT)
40 —— - r

=

Moment, M (Hips T

d &
= -:f___':_..'_.

Erample 2: Cerder Lift (er=4.5A, yrm=0Sin.), Momant, Wy (kips AH)

.r’f J ( “ :

&
— ._'_I_I woanis

B

=
=
e
=
=

=~
=
o
=
=
=

a. Top View b. Isometric View

Fig. E5. Example Two Center Lift Case, Ribbed Sab, Moment in y-Direction.

Example 2 Cartar Lit (gm=4.5%, ym=0.%in, Moment, bty fips ] (CT) Example 2: Center Lt ferm=4 50, yro=03in.] | Moment, My (kips i) [CT)
A0; 1 e

&

Womant, My (kips i)

b. Isometric View

Fig. E6. Example Two Center Lift Case, Flat Sab, Moment in y-Direction.
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Exarmpla 2 Cenler Lift [arn=d &ft, prm=0.8in.], Momant, My |]

a. Top View . [sometric View

Fig. E7. Example Two Center Lift Case, Ribbed Sab, Twisting Moment.

Cerdar Lift (gme=4. 1, omant, b

a. Top View b. Isometric View

Fig. E8. Example Two Center Lift Case, Flat Sab, Twisting Moment.

Enample 2. Cerer Li
A0

¥

She=r Force,

i

X S)I’IC View

a. lop View

Fig. E9. Example Two Center Lift Case, Ribbed Sab, Shear in x-Direction.
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| She=ar Force,

Certer Lt fem=4.5

SR

b. Isometric View

a. Top View
Fig. E10. Example Two Center Lift Case, Flat Sab, Shear in x-Direction.

=4 Sft, yro=0.8in.], ShearFarce,

Chear Force

a. Top View

Fig. E11. Example Two Center Lift Case, Ribbed Sab, Shear in y-Direction.

b. Isometric View

a. lop View . sometric View

Fig. E12. Example Two Center Lift Case, Flat Sab, Shear in y-Direction.
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=camanis fin.d

Cizpl

a. [op View . |SOmetric view

Fig. E13. Example Two Edge Lift Case, Ribbed Sab, Displacements.

W-EiE

a. Top View b. Isometric View

Fig. E14. Example Two Edge Lift Case, Flat Sab, Displacements.

2 Edge Ll [em=5.50 1. telomant; blx cips i)

a. Top View . sometric View

Fig. E15. Example Two Edge Lift Case, Ribbed Sab, Moment in x-Direction.




Example 3: Edga Lift far=E5f, yrm=070Eir |, Womer , bix fkips ffl) (CT) 2: Edge Lifl {eme=5.56, yre=0 T05in.}, oment, Me deip= i) CT)
A0¢ ‘| i

35 r

A0

Moment, M (kins ]

g
=
=
Ty
=
5

a. Top View b. Isometric View

Fig. E17. Example Two Edge Lift Case, Ribbed Sab, Moment in y-Direction.

Example 1: Edga Lift [sm=E 50, yr=0706in |, Momend, My (kips ffl) (CT)

tumer, My kips L)

a. Top View b. Isometric View

Fig. E18. Example Two Edge Lift Case, Flat Sab, Moment in y-Direction.




Exarnple 2: Edge Lit fem=5.5%, ym=0708in.), Mormant i Exampla 2: Edge Lit {em=5E%, ym=0 T085i

40 4

Edge Lifi [ar=E50, » Euample 2 Edga Lift [= =, hiey (kips AR

a. Top View b. Iso

metric View

Fig. E20. Example Two Edge Lift Case, Flat Sab, Twisting Moment.

=5.5%, ym=.708in.), Shear Forca,

K A {14
a. lop View b. Isometric View

Fig. E21. Example Two Edge Lift Case, Ribbed Sab, Shear in x-Direction.
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mpla 2. Edga Lift (erm=5.5%, ym=0.7TEin)

a. Top View . [sometric View

Fig. E22. Example Two Edge Lift Case, Flat Sab, Shear in x-Direction.

om=A.5%, ym=l. 70 Shear Forca, Cny il Examplo 2 Edpa L# |; i I ] zar Forco

a. Top View b. Isometric View

Fig. E23. Example Two Edge Lift Case, Ribbed Sab, Shear in y-Direction.

Ewample 2 Edga Lift (em=5.5%, prm=0.706in), Shear Force, Oy [k I T fi, prr=0U706in.], Shear Force, Gny
A0 -

a. lop View b. Isometric View

Fig. E24. Example Two Edge Lift Case, Flat Sab, Shear in y-Direction.
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a. Top View b. Isometric View

Fig. F1. Example Three Compressible Soil, Ribbed Sab, Displacements.

a. Top View b. Isometric View

Fig. F2. Example Three Compressible Soil, Flat Sab, Displacements.

a. Top View b. Isometric View

Fig. F3. Example Three Compressible Soil, Ribbed Sab, Moment in x-Direction.




a. Top View b. Isometric View

Fig. F4. Example Three Compressible Soil, Flat Sab, Moment in x-Direction.

a. Top View b. Isometric View

Fig. F5. Example Three Compressible Soil, Ribbed Sab, Moment in y-Direction.

a. Top View b. Isometric View

Fig. F6. Example Three Compressible Soil, Flat Sab, Moment in y-Direction.




zmibla Enil, Moment, My [lips R4 =xarmpla 3: aaa , W ol , May (laps iA)

a. Top View b. Isometric View

Fig. F7. Example Three Compressible Soil, Ribbed Sab, Twisting Moment.

a. Top View b. Isometric View

Fig. F8. Example Three Compressible Soil, Flat Sab, Twisting Moment.

Example 3:

a. Top View b. Isometric View

Fig. F9. Example Three Compressible Soil, Ribbed Sab, Shear in x-Direction.




a. Top View b. Isometric View

Fig. F10. Example Three Compressible Soil, Flat Sab, Shear in xDirection.

a. Top View b. Isometric View

Fig. F11. Example Three Compressible Soil, Ribbed Sab, Shear in y-Direction.

a. Top View b. Isometric View

Fig. F12. Example Three Compressible Soil, Flat Sab, Shear in y-Direction.




APPENDIX G
A TYPICAL OUTPUT FROM RSLABM PROGRAM

KASE 2, Center Lift, Exanple A.6 from PTI Manual

OUTPUT FROM PROGRAM RSLAB"

A SLAB-ON-GRADE PROBLEM |S ANALYZED
(USI NG THE SHEAR DEFCRIVATI ON THECRY)

MATERI AL PRCPERTI ES OF THE SLAB ANALYZED:

Modul us of elasticity, E1 ............... = 0.2160E+09
Mbdul us of elasticity, E2 ............... = 0. 2160E+09
Poi ssons ratio, ANUL2 ................... = 0. 2500E+00
Shear nmodulus, Gl2 ...................... = 0. 8640E+08
Shear nodulus, GI3 ...................... = 0.8640E+08
Shear modulus, Q3 ...................... = 0. 8640E+08
MATERI AL PROPERTIES OF THE FOUNDATI ON SO L:
Modul us of H asticity, YMB .............. = 0. 1440E+06
Poissons ratio, PRS ..................... = 0. 4000E+00
SLAB VEI GHT, THI CKNESS, AND LQAD:
Unit weight of reinforced concrete, W\RC. = 0.1500E+03
Uniformslab thickness, STHC ........... = 0. 4000E+02
Uniformdistributed load, DSLOAD ........ = 0. 3300E+00
*** A General Domain Mesh Consisting of ***
*** Rectangul ar El ements is Used ***
FI NIl TE ELEMENT MESH | NFCRVATI O\
Nunmber of nodes per elenent, NPE ........ = 4
No. of primary deg. of freedom node, NDF = 3
Nunber of elenents in the mesh, NEM..... = 246
Nurmber of nodes in the mesh, NNM........ = 282
Nunber of equations to be solved, NEQ ...= 846
Hal f bandwi dth of the matrix GLK, NHBW..= 60
Kase 2 lteration Data:
Iteration No., KTW........................ = 1
Nurber of zero coefficients at
current iteration, KTW ................... = 384
Nurber of zero coefficients at
previous iteration, KTWOP . ................ = 0
Kase 2 lteration Data:
Iteration No., KTW........................ = 2
Nunber of zero coefficients at
current iteration, KIWD ................... = 212
Nunber of zero coefficients at
previous iteration, KTWOP ................. = 384
Kase 2 lteration Data:
Iteration No., KTW........................ = 3
Nunber of zero coefficients at
current iteration, KIWD ................... = 208
Nunber of zero coefficients at
previous iteration, KTWOP . ................ = 212
Kase 2 Iteration Data:
Iteration No., KTW........................ = 4
Nunber of zero coefficients at
current iteration, KTWO ................... = 208
Nunber of zero coefficients at
previous iteration, KTWOP ................. = 208

81



SOLUTI ON:

Node x-coord. y - coor d. deflec. w X-rotation y-rotation
1 0.00000E+00  0.00000E+00  0.28975E+00 0.16769E02 0.84267E-02
2 0.83300E+00 0. 00000E+00  0.28782E+00  0.19669E02 0. 85515E-02
3 0.36998E+01 0. 00000E+00  0.28624E+00 0.20200E02 0.13000E-01
4  0.65666E+01  0.00000E+00  0.28482E+00 0.11826E02 0.17648E-01
5 0.94334E+01 0. 00000E+00 0. 28453E+00 0.36900E04 0.18716E-01
6 0.12300E+02 0. 00000E+00  0.28299E+00 -0.79860E03 0.16063E-01
7 0.15167E+02 0. 00000E+00  0.28342E+00 -0.85972E03 0.12902E-01
8 0.16000E+02 0. 00000E+00  0.28334E+00 -0.66263E03 0.12768E-01
9  0.00000E+00  0.83300E+00  0.28202E+00 0.14816E02 0.86761E-02
10  0.83300E+00  0.83300E+00  0.28130E+00  0.13312E02  0.84339E-02
11  0.36998E+01  0.83300E+00  0.27482E+00 0.50555E03 0.13076E-01
12 0.65666E+01  0.83300E+00 0.27066E+00 0.29319E03 0.17688E-01
13  0.94334E+01 0. 83300E+00 0.26835E+00 0.31942E03 0.18757E-01
14  0.12300E+02 0. 83300E+00 0.27016E+00 0.20460E03 0.16121E-01
15 0.15167E+02 0. 83300E+00  0.27213E+00 -0.38346E03 0.12822E-01
16 0. 16000E+02  0.83300E+00 0.27316E+00 -0.48746E03 0.12930E-01
17  0.00000E+00  0.30664E+01  0.26500E+00 0.40518E02 0.87414E-02
18  0.83300E+00 0.30664E+01  0.26107E+00 0.41629E02 0.75173E-02
19  0.36998E+01  0.30664E+01  0.24442E+00 0.92996E02 0. 15665E-01
20 0.65666E+01  0.30664E+01  0.22773E+00 0.38883E02 0.19451E-01
(out put suppressed)
Node No. x-ccord. y- coor d. MAX/ M N Defl ec.
1 0.00 0.00 0. 2897E+00
183 19. 04 24. 42 0. 8774E-01
FORCE RESULTS
x-coor d. y-coor d. Mk My My (07 Q
0. 4165E+00  0.4165E+00 0. 1591E+05 0. 1537E+05 - 0. 3279E+05 0. 4152E+04 -0. 4603E+04
0.2266E+01 0. 4165E+00 -0.2165E+05 -0.9000E+04 0. 1699E+05 0. 7320E+04 -0. 3759E+03
0.5133E+01 0. 4165E+00 -0.2545E+05 0.3670E+04 0. 9910E+04 0.3642E+04 0. 1207E+03
0. 8000E+01  0.4165E+00 -0.2810E+05 0.4783E+02 0. 4806E+03 0.9179E+03 -0. 6532E+03
0. 1087E+02  0.4165E+00 -0.2315E+05 0. 2867E+04 - 0. 8686E+04 -0.1867E+04 0. 1385E+03
0. 1373E+02 0. 4165E+00 -0.1789E+05 -0.6350E+04 - 0.1375E+05 -0. 6038E+04 -0. 2507E+03
0. 1558E+02  0.4165E+00 0. 1047E+05 0. 9680E+04 0. 2164E+05 - 0. 3727E+04 -0.4177E+04
0. 4165E+00 0. 1950E+01 -0.1095E+05 -0.3018E+05 0. 1897E+05 - 0.4204E+04 0. 4675E+03
0.2266E+01  0.1950E+01  0.5834E+03  0.3880E+03 0. 1251E+04 - 0. 4958E+04 -0. 3838E+04
(out put suppressed)
El em No. x-coord. y-coord. Max. (+)/ M n. (+) Moment (M)
1 0.42 0.42 0. 1591E+05
89 30. 52 16. 06 0. 3257E+01
El em No. x-coord. y-coord. Max. (-)/Mn. (-) Mnent (M)
158 33.56 24.00 - 0. 1265E+06
186 17.52 28. 45 - 0. 4327E+01
El em No. x-coord. y-coord. Max. (+)/ M n. (+) Moment (M)
246 41.58 35. 58 0. 1587E+05
216 8. 00 33.82 0. 9741E+01
El em No. x-coord. y-coord. Max. (-)/Mn. (-) Monent (M)
173 28.58 25.76 - 0. 1630E+06
177 39.65 25.76 - 0. 5493E+00
El em No. x-ccord. y-coord. Max. (+)/ M n. (+) Monent (My)
230 0.42 35.58 0. 2727E+05
199 8.00 31.14 0. 3026E+01
El em No. x-ccord. y-coord. Max. (-)/Mn.(-) Morent (My)
1 0.42 0. 42 - 0. 3279E+05
209 33.56 31.14 - 0. 1072E+02
El em No. x-coord. y-coord. Max. (+)/M n. (+) Shear (Qx)
160 39. 65 24.00 0. 2224E+05
102 20. 56 18.21 0. 2165E+01
El em No. x-coord. y-coord. Max. (-)/Mn.(-) Shear ()
146 2.27 24. 00 - 0. 1959E+05
165 8. 00 25.76 - 0. 2880E+01
El em No. x-coord. y-coord. Max. (+)/ M n. (+) Shear (Qy)
224 28.58 33.82 0. 2441E+05
70 26. 65 13.91 0. 3127E+01
El em No. x-coord. y-coord. Max. (-)/Mn. (-) Shear (Qy)
71 28.58 13.91 - 0. 2307E+05

160 39. 65 24.00 - 0. 3946E+00
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APPENDIX H
SOIL MOVEMENT TABLES

Table H1. Soil Movement Guide Numbers: Lawn Irrigation (from

Lytton 2001).
Measured Ym dee Numbers :
) Controlling Surface Suction
Suction -
Fat Due to Lawn Watering
Dp 0 With 4 ft. Deep Moisture
epth, pF —units Barrier
Zm, .
m pF -- units
2.5 2.7 3.0 3.5 2.5 2.7 3.0 3.5
2.7 3.2 0 0 0 0.1 0 0 0
3.0 9.6 5.1 0 0 0.1 0.1 0 0
3.3 177 121 | 51 0 0.1 0.1 0.1 0
3.6 271 2071 121| 1.6 1.3 0.5 0.1 0.1
3.9 38.1 308|207 73| 3.8 1.9 0.5 0.1
4.2 50.4 42.1 | 30.8 | 14.8 7.7 4.9 1.9 0.1
4.5 63.6 54.7| 421 | 239 | 124 | 9.1 4.9 0.8

Table H2. Soil Movement Guide Numbers. Flower Bed Case

(from Lytton 2001).
Mesred y,, QuceNumas
Sdian Conirdling Quface Sudion Dueto
pFa Hower Bed Welging

Deth, . With4ft Degp Madure Barig
z, pr-unts oF — urits
m 25 30 35| 25 27 ( 30 35
27 32 0 0 0 0 0 0
30 [131 O 0 0 0 0 0
33 |2Z713 70 0 |37 10| O 0
36 [487 142| 16| 116 62 | 11 0
39 | @5 HB1l| 102|225 12| 64 O
42 | 0V3 60| A5 HB1 XH6| 1563 24
45 |10 767 | 423 ]| 490 37| 266 91

Table H3. Soil Movement Guide Numbers: Tree Drying Case
without Moisture Barrier (from Lytton 2001).

Depth of ym Guide Numbers

Tree Measured Equilibrium Suction at Depth, zn

Root pF -- units

Zone, ft 5730 | 3336 | 39 | 42 | 45
4 -79.1 -60.1 | -432 -284 | -156| -0.1 0.0
10 -169.6 -146.3 [ -1249 -82.8 |-426 | -9.7° 0.0
15 -244.7 -2136 | -1825 | o o|-426 | 97 0.0
20 -3334 -2029 | -2525 | o 0| -426 | 97 0.0

©Movement active zone, za = 11.5 ft.

Movement active zone, za = 7.5 ft.
Movement active zone, za = 3.5 ft.

Table H4. Soil Movement Guide Numbers: Tree Drying Case
with Moisture Barrier (from Lytton 2001).

Depth ym Guide Numbers

of Maeasured Equilibrium Suction at Depth, zm

Tree (With 4 ft Deep Moisture Barrier)

Root pF -- units

Zone ft| 57 3.0 3.3 3.6 3.9 4.2 45
4 -365| -252 -158 -81 | -26 0.0 0.0
10 |-1163) -1024 -884 -53.1|-215 0.0 0.0
15 [-1035]| -1705 -1475 -785°| -215 0.0 0.0
20 |-2782| -2461 -2142 -785°|-215 00 0.0

~Movement active zone, z2 = 11.5ft.

Movement active zone, za = 7.5 ft.




APPENDIX |
EXPANSIVE SOIL VOLUME CHANGE GUIDE
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Fig. 15. Expansive Soil Volume Change Guide Number, Zone 6

(from Covar 2001).
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Fig. 16. Expansive Soil Volume Change Guide Number, Zone 7
(from Covar 2001).
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Fig. I7. Expansive Soil Volume Change Guide Number, Zone 8 (from
Covar 2001).
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