Design of Structures to Resist the Pressures and Movements of Expansive Soils

Robert L. Lytton

Texas A&M University Foundation Performance Association December 12, 2007

Acknowledgements

Gyeong-Taek Hong Rong Luo Charles P. Aubeny **Rifat Bulut** Jorge A. Prozzi Xiaoyan Long Anshuman Thakur Eeshani Sood

Topics (1/2)

- Soil properties
- Suction envelopes
 - Climates
 - > Trees
 - Drainage
- Pavement design
 - Concrete and asphalt
 - Stabilized layers
 - Vertical and horizontal moisture barrier

Topics (2/2)

- Shrinkage cracking design
- Shallow slope failure
- Slab-on-ground design
- Drilled pier design
 - Lateral pressures
 - Stresses, strains, movements
 - Comparison with field measurement
- Retaining wall design
 - Lateral pressures
 - Stresses, strains, movements
 - Comparisons with measurements

$\frac{\Delta V}{V} = -\gamma_{h} \log_{10} \left(\frac{h_{f}}{h_{i}} \right) - \gamma_{\sigma} \log_{10} \left(\frac{\sigma_{f}}{\sigma_{i}} \right) \quad \text{(Lytton, 1977)}$

$$\frac{\Delta H}{H} = f\left(\frac{\Delta V}{V}\right)$$

 $f = 0.67 - 0.33 \Delta pF$ (f = 0.5 when drying; f = 0.8 when wetting)

$$\Delta = \sum_{i=1}^{n} f_{i} \left[\frac{\Delta V}{V} \right]_{i} \Delta Z_{i}$$

Volume–Mean Principle Stress-Suction surface

Volume Change

6500 Data from SSL Of National Soil Survey Center Partitioning Database on Mineral Classification

(Covar and Lytton, 2001)

Volume Change

$$\% f_c = \frac{\% - 2\,\mu m}{\% - No.200\,\text{sieve}}$$

$$\gamma_{h} = \gamma_{0} \quad \left[\frac{\% - 2\mu m}{\% - No.200 \text{ sieve}} \right]$$

$$\gamma_{\sigma} = \gamma_{h} \frac{1}{1 + \frac{h}{\theta\left(\frac{\partial h}{\partial \theta}\right)}}$$

Zone III (Covar and Lytton, 2001)

(Lytton, 1994)

Exponential Suction Profile for Extreme Wetting and Drying Condition

$$\mathbf{U}(\mathbf{Z},\mathbf{t}) = \mathbf{U}_{e} + \mathbf{U}_{o} \exp\left(-\sqrt{\frac{\mathbf{n}\pi}{\alpha}}\mathbf{Z}\right) \cos\left(2\pi\mathbf{n}\mathbf{t} - \sqrt{\frac{\mathbf{n}\pi}{\alpha}}\mathbf{Z}\right)$$

 $\frac{n\pi}{Z}$

 $U(Z) = U_e + U_o exp$

Mitchell (1979)

Fort Worth Interstate 820

7

$\frac{\Delta V}{V} = -\gamma_{h} \log_{10} \left(\frac{h_{f}}{h_{i}} \right) - \gamma_{\sigma} \log_{10} \left(\frac{\sigma_{f}}{\sigma_{i}} \right) \quad \text{(Lytton, 1977)}$

 $\frac{\Delta H}{H} = f\left(\frac{\Delta V}{V}\right)$

 $f = 0.67 - 0.33 \Delta pF$ (f = 0.5 when drying; f = 0.8 when wetting)

$$\Delta = \sum_{i=1}^{n} f_{i} \left[\frac{\Delta V}{V} \right]_{i} \Delta Z_{i}$$

Volume–Mean Principle Stress-Suction surface

Lateral Pressure Coefficients

Volumetric Moisture Content and Suction Curves

Pavement Design on Expansive Soils

Pavement Treatments

Barrier

13

Transverse Distribution of Vertical (in) Movements

Field Conditions

 $U_{\rm e} = 3.5633 \exp(-0.0051 \text{TMI})$

Climatic Conditions

Thornthwaite Moisture Index (TMI, 1948)

Roadside Drainage Conditions

 $TMI = \frac{100R - 60DEF}{E_p}$

R = runoff moisture depth DEF =deficit moisture depth Ep = evapotranspiration

Calculated Vertical Movement

Fort Worth Interstate 820 B

Comparison of PVR with Case Study Results

18

Acceptable Predicted Performance

Flexible Pavement Fort Worth Interstate 820 A

Acceptable Predicted Performance

Fort Worth Interstate 820 B

Predicted Roughness with Time

Loss of Serviceability

Increase of Roughness

SUBGRADE MOVEMENTS COMPARED WITH PVR FOR A MINIMUM ACCEPTABLE TREATMENT

Case Sites		New Method				PVR	
		Edge			Outer	Edge	Outer
		Swell	Shrink	Total	\sim		\sim
	А	0.02	1.12	1.14	0.42	1.21	0.81
Fort Worth	В	0.78	0.72	1.50	0.61	2.08	1.20
	С	0.72	0.73	1.45	0.57	2.08	1.20
Atlanta		0.30	1.06	1.36	1.08	1.28	0.88
Austin	Main	0.37	0.43	0.80	0.49	1.45	1.13
	Frontage	0.66	0.58	1.24	0.84	1.94	1.17

22

Longitudinal Cracking over Expansive Soil

- Expansive soil
 - Experience volumetric change when subjected to moisture variation
- Longitudinal crack
 - Initiate in shrinking expansive subgrade
 - Propagate to pavement surface

Practice of Geogrid Reinforcement

Practice of Lime Treatment

Stress Analysis on Subgrade Soil

- Stress variable for saturated soil: σ -u_w
- Stress variable for unsaturated soil: σ -u_a, u_a-u_w
- Soil suction
 - > The affinity of soil for water
 - > Matric suction: negative water pressure
 - Solution Solution Solution Solution Solution Solution Solution
- Constitutive equation to estimate the volumetric strain of unsaturated soil:

$$\frac{\Delta V}{V} = -\gamma_h \log_{10} \left(\frac{h_f}{h_i}\right) - \gamma_\sigma \log_{10} \left(\frac{\sigma_f}{\sigma_i}\right) - \gamma_\pi \log_{10} \left(\frac{\pi_f}{\pi_i}\right)$$

$$\frac{\Delta V}{V} = -\gamma_h \log_{10} \left(\frac{h_f}{h_i}\right) - \gamma_\sigma \log_{10} \left(\frac{\sigma_f}{\sigma_i}\right) - \gamma_\pi \log_{10} \left(\frac{\pi_f}{\pi_i}\right)$$

where

 $\frac{\Delta V}{V}$ = volumetric strain;

 h_i = initial value of matric suction;

 h_f = final values of matric suction;

 σ_i = initial value of mean principle stress;

 σ_f = finial value of mean principle stress;

 π_i = initial value of osmotic suction;

 π_f = finial value of osmotic suction;

 γ_h = matric suction compression index;

 γ_{σ} = mean principal stress compression index; and

 γ_{π} = osmotic suction compression index.

Without Geogrid Reinforcement...

With Geogrid Reinforcement...

Mechanism of Geogrid Reinforcement

Transverse Stress Distribution in Pavement (Full Restraint)

Transverse Stress Distribution in Pavement (Crack at Edge of Shoulder)

Transverse Stress Distribution in Pavement with Treated Layer

Slab-on-Ground Design

SH

RINK

SI

Example 1: Center Lift (em=5.5ft, ym=3.608in.), Displacements (in.)

 From Empirical Relation of Thornthwaite Moisture Index with equilibrium suction (Russam and Coleman, 1961)

Index (Russam and Coleman, 1961)

 From Empirical Relation of Thornthwaite Moisture Index with equilibrium suction (Russan and Coleman, 1961)

Equilibrium Soil Suction vs. TMI

Crack Spacing Gets Larger with Depth

SOURCE : MICHAEL KNIGHT PH. D. DISSERTATATION, GEOLOGY UNIVERSITY OF MELBOURNE (AUSTRALIA) 1972

Field to laboratory diffusion coefficient ratio (Cont'd)

Field α /laboratory α_0

Drilled Pier Design

Retaining Wall Design

Lateral Earth Pressure Concept (1/5)

Suction Change

Lateral Earth Pressure Concept (2/5)

$$\sigma_{h} = k_{0}\gamma_{t}z = \left(\frac{3}{2}\right)\sigma_{i}10^{-\frac{2\epsilon_{h}}{\gamma_{\sigma}(1-f)}} \left(\frac{h_{i}}{h_{f}}\right)^{\frac{\gamma_{h}}{\gamma_{\sigma}}} - \frac{\gamma_{t}z}{2}$$

Suction Change

Lateral Pressure
Due to Suction Change

Lateral Earth Pressure Concept (3/5)

Lateral Earth Pressure Concept (4/5)

Lateral Earth Pressure Concept (5/5)

Zone

Severe damage to a reinforced concrete columns due to differential heave, in Saudi Arabia (Al-Shamrani and Dhowian, 2003)

Retaining Walls

3 – 4 ft

Horizontal Earth Pressure in Expansive Soils

Williams and Jennings (1973)

Fissures caused by a *passive failure* of the soil resulting from the horizontal pressure during seasonal swelling of the clay

Mean angle of the fissure to the horizontal = 43 degree

Silckensides occurs in soil which has PI >30, -2μ m>30

Leeuhof test site at Vereeniging, South Africa

Brackely and Sanders (1992)

Natural horizontal pressures measured in field

Komornik (1962) Measured horizontal pressures in the large scale pile test

Kim and O'Neill (1998) Axial behavior of the pier

Test Site Stratigraphy (NGES-UH)

Schedule of Rebar and Concrete in Drilled Shaft

Kim and O'Neill (1998) Axial behavior of the pier

Bar versus Time(1 bar=100 kPa)

Uplift Force versus Time

Kim and O'Neill (1998) Axial behavior of the pier

Case Study of Bending Behavior of the Pier Uneven Wetting with Same Initial Condition

Case Study of Bending Behavior of the Pier Uneven Wetting with Same Initial Condition

Case Study of Bending Behavior of the Pier Uneven Wetting with Same Initial Condition

Retaining Wall Design

Katti et al. (1979) Measured horizontal pressures in the large scale retaining wall test

Katti et al. (1979) Measured horizontal pressures in the large scale retaining wall test

Case Study of Bending Behavior of the Retaining Wall

NGES-UH Site (Kim and O'Neill, 1998)

Case Study of Bending Behavior of the Retaining Wall

NGES-UH Site (Kim and O'Neill, 1998)

Topics (2/2)

- Shrinkage cracking design
- Shallow slope failure
- Slab-on-ground design
- Drilled pier design
 - Lateral pressures
 - Stresses, strains, movements
 - Comparison with field measurement
- Retaining wall design
 - Lateral pressures
 - Stresses, strains, movements
 - Comparisons with measurements

Topics (1/2)

- Soil properties
- Suction envelopes
 - Climates
 - > Trees
 - Drainage
- Pavement design
 - Concrete and asphalt
 - Stabilized layers
 - Vertical and horizontal moisture barrier

Design of Structures to Resist the Pressures and Movements of Expansive Soils

Robert L. Lytton

Texas A&M University Foundation Performance Association December 12, 2007