asphalt institute

Asphalt Pavements: Perpetual to Porous

Gary L. Fitts, P.E. Sr. Regional Engineer Asphalt Institute

- Perpetual (long-life) asphalt pavements:
 - Background, observations, design requirements
- Porous asphalt pavements
 - Design requirements, limitations

asphalt

ASPHALT INSTITUTE

- International association of petroleum asphalt producers, manufacturers, and affiliated businesses, established in 1919
- Promotes the use, benefits and quality performance of petroleum asphalt through engineering, research and educational activities.
- HQ office-Lexington, KY, local office-San Antonio area
- www.asphaltinstitute.org

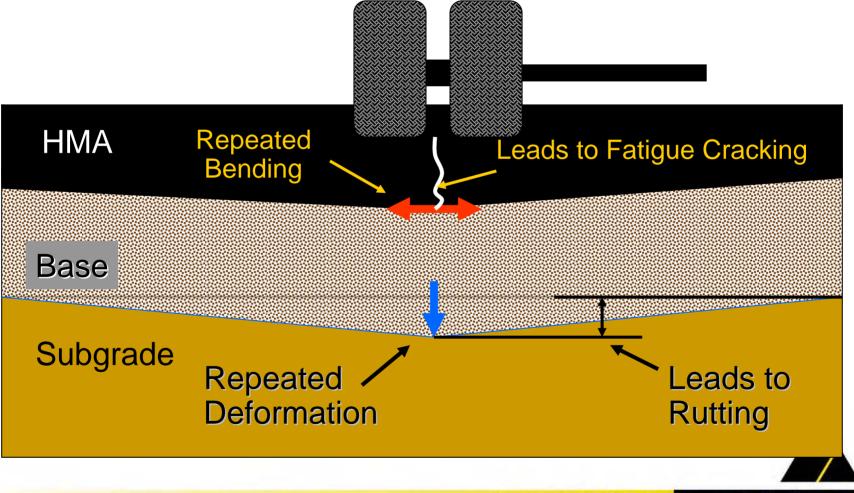
asphalt

MEMBER COMPANIES

AFFILIATE MEMBERS

Background

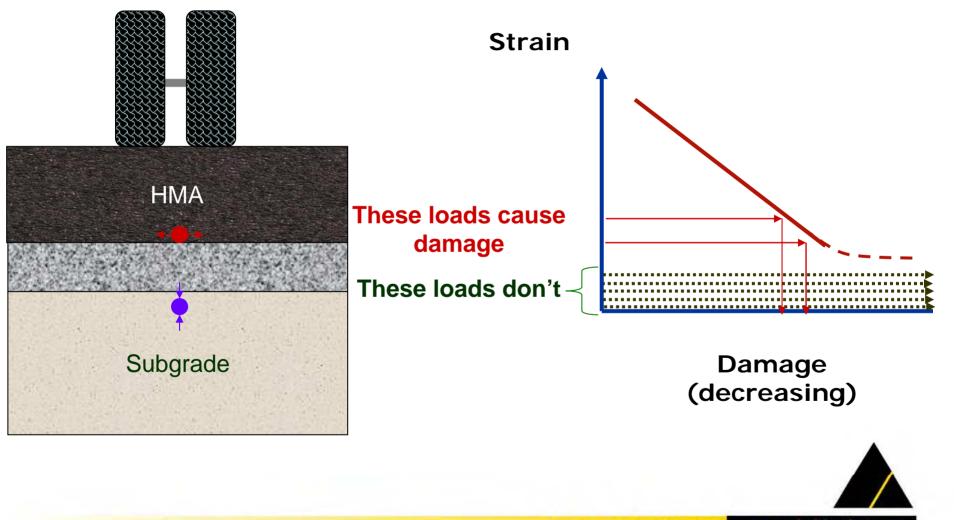
- asphalt institute
- Many "long life" asphalt pavements have been observed in the U.S. and elsewhere
 - Pavements lasting much longer/receiving much more traffic than they were designed for
 - Led to forensic studies and analyses to find out why these pavements performed so well
- With increases in truck traffic, it is necessary to identify efficient, long-term asphalt pavement strategies for "heavy-duty" applications
 - Empirical design procedures consistently overdesign asphalt pavements for high truck traffic volumes


1993 AASHTO Guide

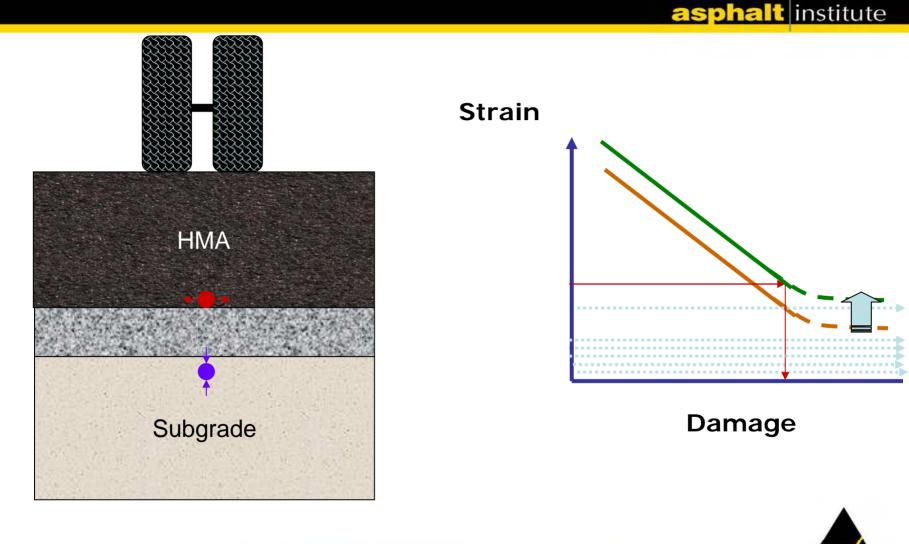
Pavement Response to Load

asphalt institute

Mechanistic-based methods allow consideration of anticipated axle loads.

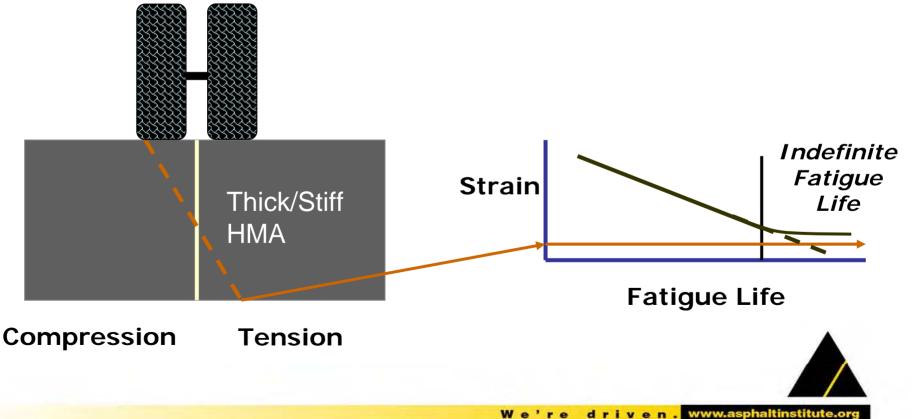

Concept of a Perpetual, or Long Life Asphalt Pavement

- Reduce load-induced strain under traffic loads to levels that do not damage the foundation or the structural asphalt layers
- Select HMA materials and mixture qualities that resist:
 - Shear deformation (rutting within the asphalt layer)
 - Moisture damage
 - Low temperature/thermal cracking
- Provide the highest level of functional performance available to highway users
 - Smooth, safe and quiet


Perpetual Pavements

- asphalt institute
- Designed so the pavement structural layers perform without significant damage
 - For light-duty pavements, "limited" damage per loaded axle application
 - For heavy-duty pavements, minimal damage per loaded axle
- Surface/wearing course replaced periodically
 - Replacement interval depends on mixture/materials type, traffic conditions, etc.

Damage Accumulation-Fatigue


Thicker, Stiffer pavement


Minimal damage, extended pavement life

Design Strategy-Fatigue

- asphalt institute
- Strain below fatigue limit = Indefinite Fatigue Life
- Reduce tensile strain by increasing pavement thickness and/or increasing stiffness

Mechanistic Criteria

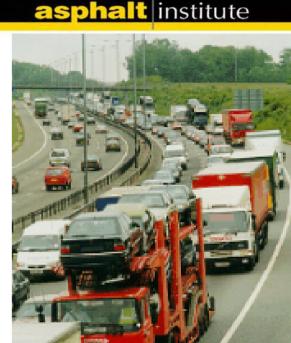
Can we prove the hypothesis?

asphalt institute

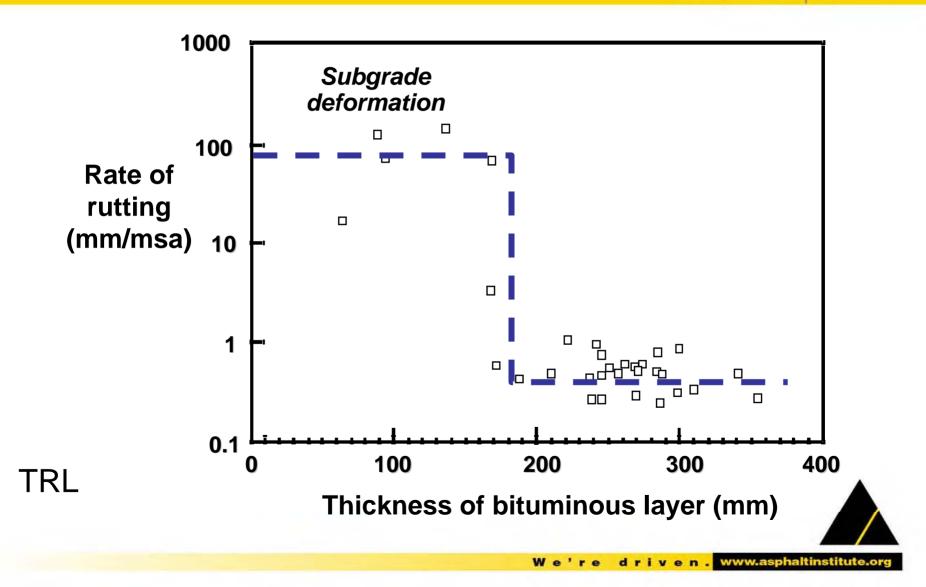
Observations:

- Performance of thick HMA pavements in the developed world
 - US Interstate
 Highways, UK
 Motorways
- Forensic evaluations suggested no structural damage

Laboratory verification:


- Endurance limit concept wellrecognized
- Does it apply to HMA?

United Kingdom


- Changed design period from 20 to 40 years in the 1990's
- TRL investigated the performance of existing heavily trafficked motorways
 - "...failed to detect evidence of deterioration in the main structural layers of the thicker, more heavily trafficked pavements"

U.K. M25 London Orbital Motorway Courtesy EAPA

Rate of Rutting vs. Total Asphalt Thickness

t institute

France & Germany

asphalt institute

Boulevard Periphérique, Paris

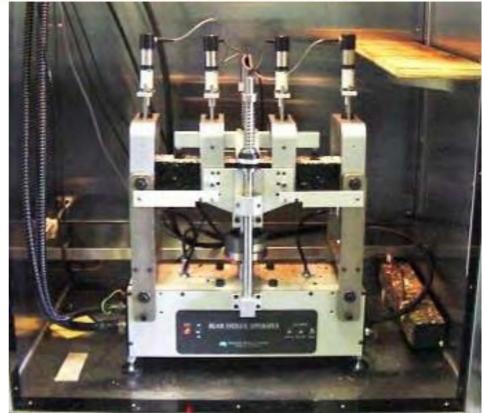
A5 Frankfurter Kreuz Interchange

- 40 year design period, strong emphasis on pavement foundation
- French example:
 - Constructed in 1993
 - 40 mm porous surface over 220 mm
 "high modulus" HMA
- German example:
 - Constructed in 1977
 - *Gußasphalt* surface, over 200 mm
 HMA over stabilized subbase

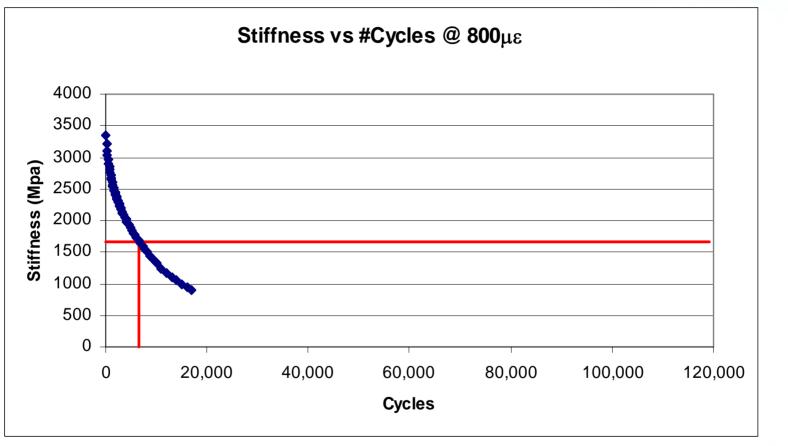
European Observations

- Ways to realize "long life" bituminous pavements:
 - Increase the stiffness of the HMA layers
 - 2X increase in stiffness increases projected life 2-5X
 - Increasing the thickness of the HMA base layer
 - 10% increase doubles the projected life

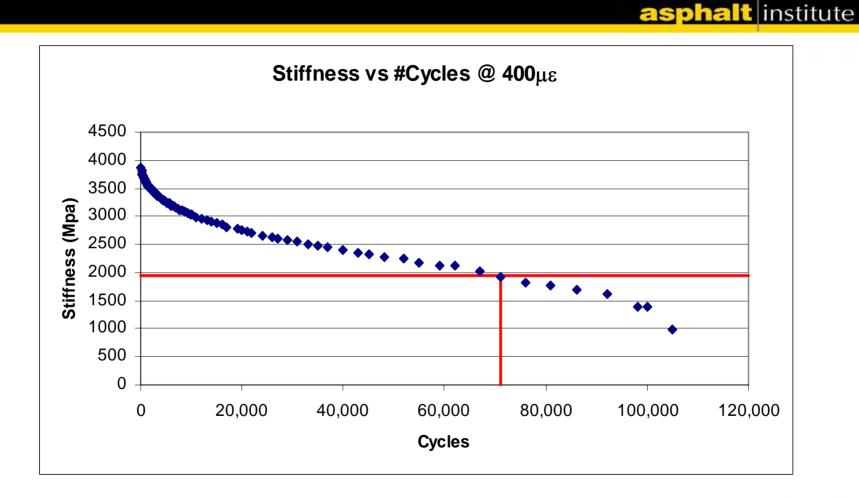
- Observed excellent performance of thick asphalt pavements built on the Interstate system and other major routes
- Interest resulted in TRB Circular No. 503, "Perpetual Bituminous Pavements," published in 2001
- "Perpetual Pavement" awards highlighted the performance of some of these pavements around the country
 - 39 projects awarded since 2002



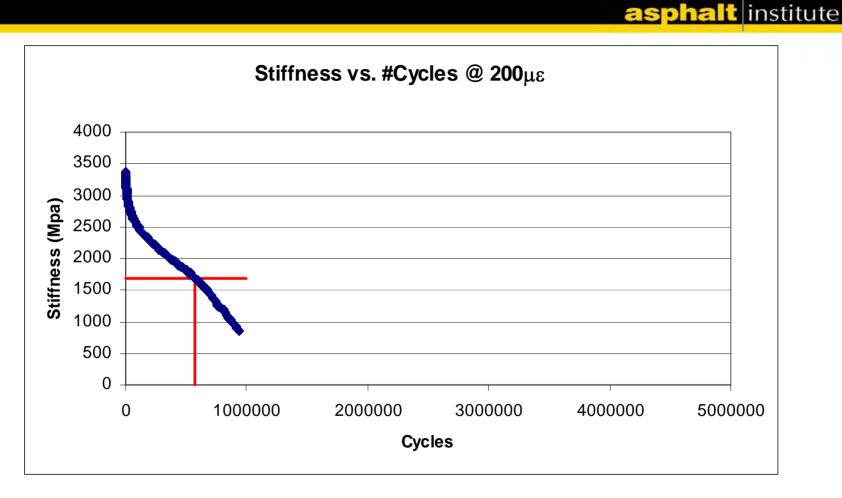
Beam Fatigue Testing of HMA



- AASHTO T-321
- Temperature: 20C
- Controlled strain
 - Test @ various levels
- Constantly monitor load (force)
- Failure defined as ½ S_{initial}

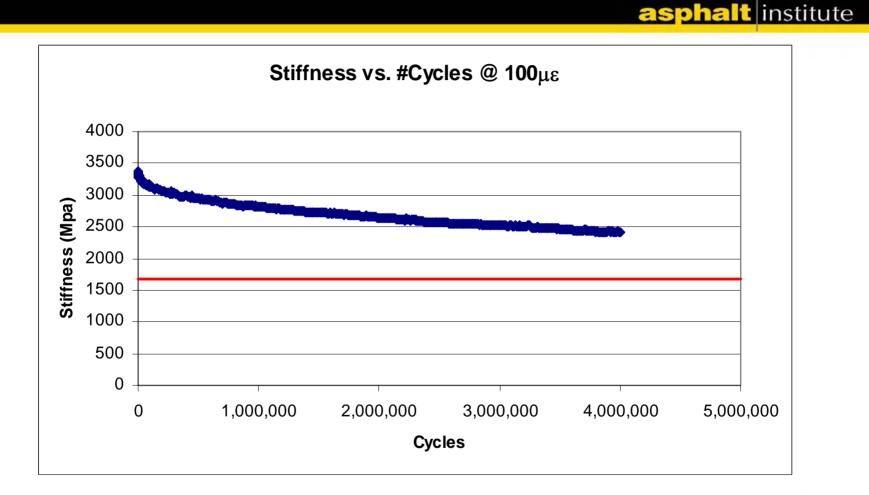


Repeated Loading @ 800με

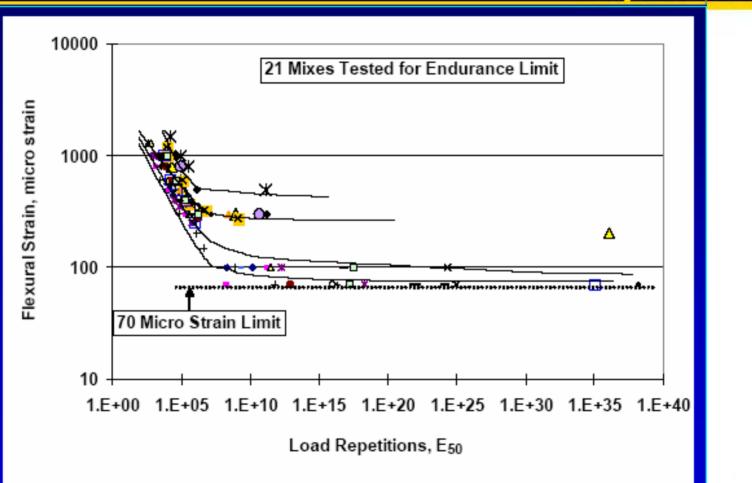


~6500 cycles

Repeated Loading @ 400με


Repeated Loading @ 200με

Note: Reducing strain by half extends fatigue life ~8-10X


Repeated Loading @ 100με

Thompson & Carpenter

Int'l Symposium on Long Lasting Asphalt Pavements, Auburn, AL asphalt institute

A strain limit was observed for <u>all</u> mixtures, but the limit differed between mixes. All exceeded 70με.

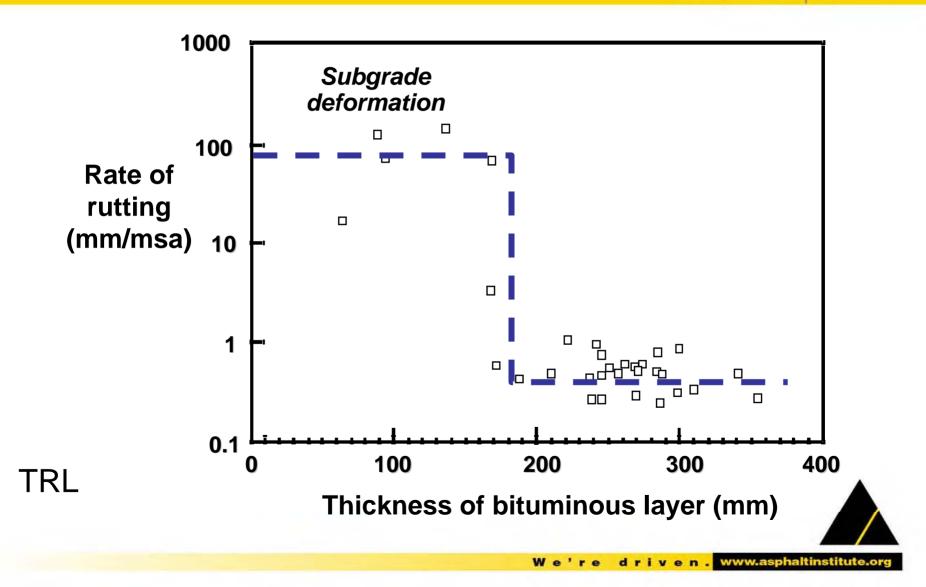
"Endurance Limit" Research

- NCHRP 9-38, "Endurance Limit of HMA to Prevent Fatigue Cracking in Flexible Pavements"
 - Awarded to NCAT
 - Dr. E. Ray Brown, Principal Investigator
 - Final report currently (2/08) being prepared
- NCHRP 9-44, "Developing a Plan for Validating an Endurance Limit for HMA Pavements"
 - Project not yet awarded

NCHRP 9-38

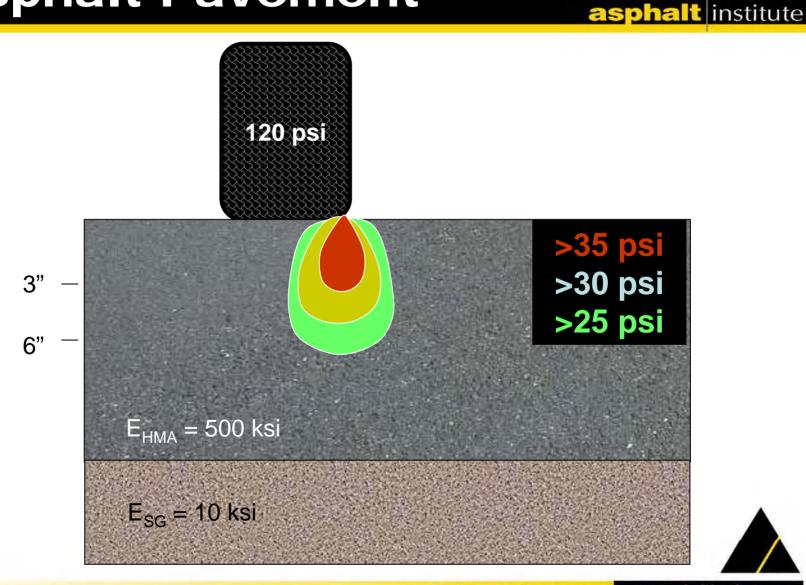
- asphalt institute
- Test the hypothesis that an endurance limit exists for fatigue behavior in HMA and measure its value for a representative range of HMA mixtures
- Suggest how to incorporate an endurance limit into mechanistic pavement design methods

Version 1.0 of MEPDG allows for including a fatigue endurance limit as an input for asphalt mixtures

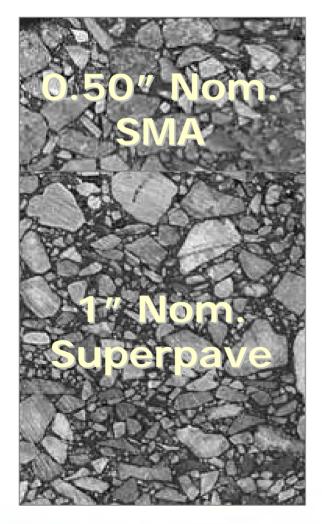


Rutting/Permanent Deformation

- "Structural" rutting is accumulated subgrade permanent deformation
 - If the subgrade deforms, the pavement above it conforms to the shape of the underlying foundation
 - Related to the vertical compressive strain at the top of the subgrade
- Rutting in the asphalt layer is addressed through mixture/materials selection
 - Particularly for upper 4-6 inches of pavement



Rate of Rutting vs. Total Asphalt Thickness

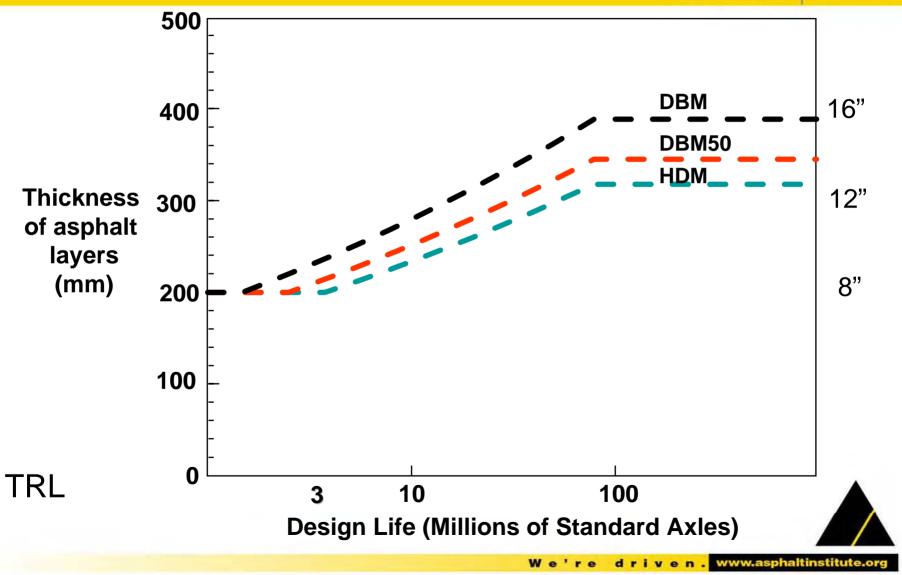


t institute

Shear Stress Within an Asphalt Pavement

Stiff, Rut Resistant Upper Layers

- Particularly important in upper 4-6 inches of pavement
- Use polymer-modified asphalt binders, mixtures that develop aggregate interlock



How do you design a perpetual pavement?

- Develop a trial pavement design
 - Using AASHTO, AI, or other pavement design procedure
 - Download PerRoad software (www.asphaltalliance.com)
- Identify key inputs for elastic layer theory/PerRoad
 - Modulus, Poisson's ratio for each pavement layer and subgrade, thickness for each pavement layer
 - Layer stiffness values may vary according to season
 - Damage function constants (k-values) for HMA, subgrade
 - Traffic load spectra

TRL Design Chart

asphalt institute

PerRoad 3.2

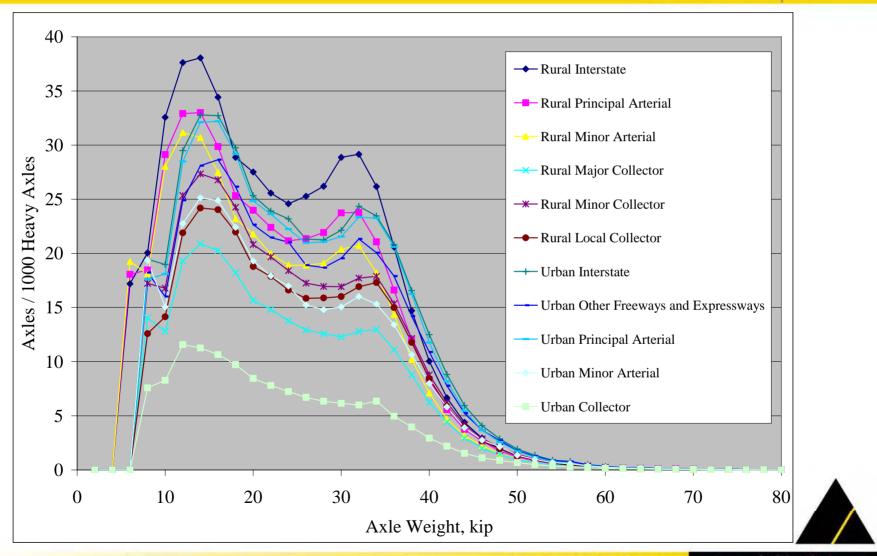
- Sponsored by APA
- Developed at Auburn University / NCAT
- M-E Pavement Analysis Tool

PerRoad Input-Structure & Materials

C 2	sonal Information Season 🗹 S	ummer 🔽 Fall	I Winter □	Spring	Current Season
	tion (weeks)	16	18 0	0	
OF	Mean Air nperature, F	68	56 68	70	Correction
	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5
Material Type	AC 🔹	Gran Base 💌	Other	Soil	Soil
PG Grade	76 🔻 -22 💌				
in Modulus (psi) 50000		5000	50	3000	3000
1odulus (psi)	600000	45000	25000	9125	9125
x Modulus (psi) 4000000		50000	10000000	40000	40000
oisson's Ratio	0.35	0.4	0.25	0.45	0.45
fin - Max	0.15- 0.4	0.35- 0.45	0.1 - 0.5	0.2 - 0.5	0.2 - 0.5
hickness (in)	12	12 8		999	Infinite
	Variability	Variability	Variability	Variability	Variability
	Performance Criteria	Performance Criteria	Performance Criteria	Performance Criteria	Performance Criteria

Cancel Changes

Accept Changes


PerRoad Input-Traffic Load Spectra

General Traffic Data Two-Way AADT 30700		% Trucks 11			% Trucks in Design Lane 90 %			Input Load Spectra	
Axles Groups / Day 1519		% Truck Growth 3		Directional Distribution 50 %					
oading Conf	igurations ((Check All That	Apply)					-	
	Single .36 %	<mark>00-00</mark>	▼ Tandem 41.33 %	Ŵ	₩ Tride	m %	0-0 p	eer	rrent Configuration
urrent Axle L	.oad Distrib	ution							
Axle Wt kip	% Axles	Axle Wt kip	% Axles	Axle Wt kip	% Axles	Axle Wt kip	% Axles	Axle Wt kip	% Axles
0-2	0	24-26	20.962	48-50	1.71	72-74	0.053	96-98	0
2-4	0	26-28	21.074	50-52	1.182	74-76	0.042	98-100	0
4-6	0	28-30	21.558	52-54	0.797	76-78	0.01	100-102	0
6-8	17.624	30-32	23.339	54-56	0.601	78-80	0.005	102-104	0
8-10	18.1	32-34	23.257	56-58	0.421	80-82	0.013	104-106	0
10-12	28.487	34-36	20.595	58-60	0.27	82-84	0	106-108	0
12-14	32.114	36-38	16.243	60-62	0.185	84-86	0	108-110	0
14-16	32.198	38-40	11.771	62-64	0.159	86-88	0	110+	0
16-18	29.182	40-42	8.183	64-66	0.113	88-90	0		
18-20	24.837	42-44	5.469	66-68	0.107	90-92	0	Total	396
20-22	23.633	44-46	3.676	68-70	0.095	92-94	0		
22-24	5.424	46-48	2.574	70-72	0.059	94-96	0		

Vehicle Type Distribution (Press F1 for Help)

	Roadway Functic	nal Classification	Rural Interstate		-
	Vehicle Classification	% AADTT	Rural Interstate Rural Principal Arteria Rural Minor Arterial Rural Major Collector	Î	
	B 4	1.2	Rural Minor Collector Rural Local Collector		
<u></u>	5	9.4	Urban Interstate Urban Other Freeway:	s and Express	wavs
Ø	6	3.3	Urban Principal Arteria Urban Minor Arterial Urban Collector	al	
	7	0.5	1	0.26	0.83
	8	7.4	2.38	0.67	Ō
A	9	68.9	1.13	1.93	0
	-0	1.2	1.19	1.09	0.89
The star	0 11	6.1	4.29	0.26	0.06
	12	0.8	3,52	1,14	0.06
	13	1.2	2,15	2,13	0.35
	Total	100			
Cancel Changes					Accept Changes

Tandem Axle Load Spectra

Dutput & Design Module (F1 for	r Help)
--------------------------------	--------	---

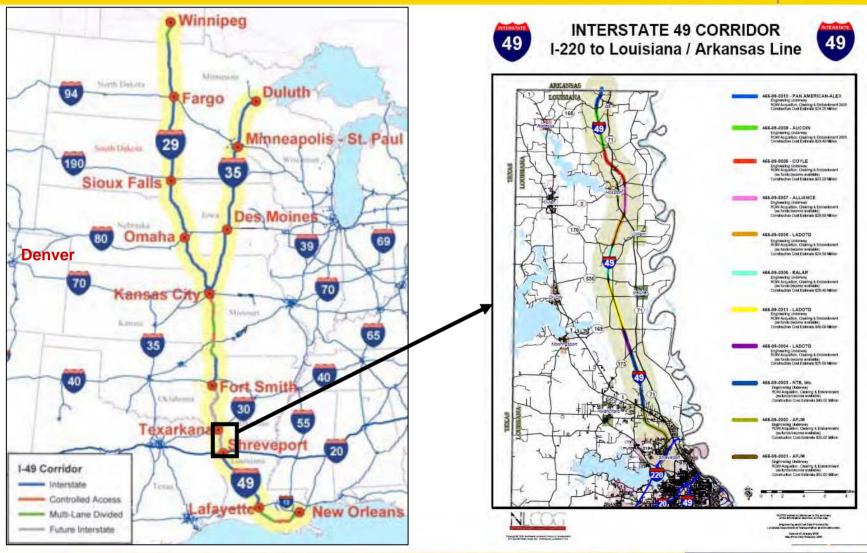
Reliability Analysis

Perform Analysis

Perpetual Pavement Design Results

Layer	Location	Location Criteria		Location Criteria Thres Units Percent Be Dama		Damage/Million A	Years to D=0.1
1	Тор	Vertical Defl	20.	milli-in	90.62	NA	NA
1	Bottom	Horizontal Str	-100.	micr	97.74	4.1794e-003	28.1
4	Bottom	Vertical Strain	200.	micr	99.14	2.6952e-003	37.253

hickness Desig	n Studio				
Jumber of Paver	г	4			
	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5
1aterial	AC	Gran Base	Other	Soil	Soil
hickness, in.	12	8	8	999	- Infinite


Output

I-49 Extension, Caddo Parish, Louisiana

- New Interstate highway construction, Shreveport to Arkansas state line
- Preliminary designs performed for asphalt and concrete pavements

Project Location

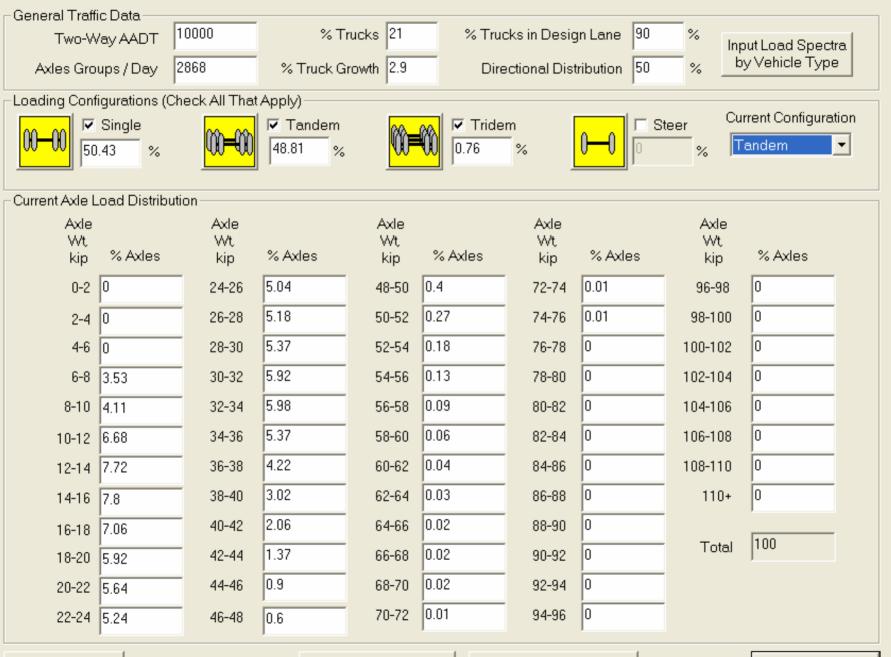
Input data sources

- Obtained inputs used for AASHTO design from LaDOTD pavement design office
- Used FWD data from similar projects to estimate layer stiffnesses to be used as input in the pavement analysis

asphalt

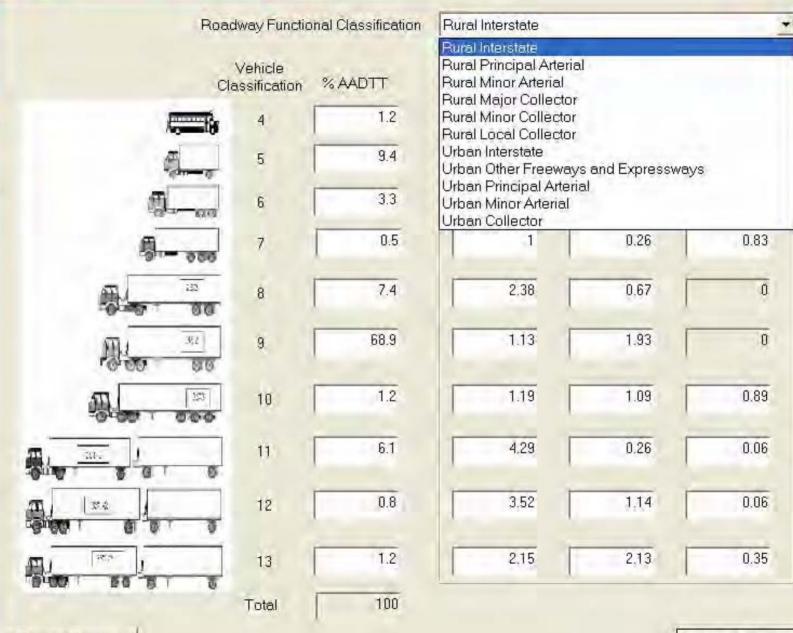
Traffic data

asphalt institute


- AADT: 10,000
- % trucks: 21.2%
- Growth rate: 2.9%

w

Loading Conditions (F1 for Help)


Cancel Changes

Import Load Spectra

Save Load Spectra

Accept Changes

Vehicle Type Distribution (Press F1 for Help)

Cancel Changes

Accept Changes

Materials data inputs

Season	Avg. air temperature, F	Estimated pay temperatur		Duration	E*, ksi
Winter	50	58		17 weeks	1600
Spring/fall	68	76		21 weeks	1250
Summer	82	91		14 weeks	1100
3000000			Other la	ayer stiffne	esses:
. م 2500000 –					
d 2000000 -		relationship, shifted et Louisiana data	E _{base}	$_{se} = 45,000$ $_{se} = 25,000$ $_{ade} = 10,000$	psi Opsi
မ္ဘ 1500000 –				se – 20,00 – 10,00	
Wodulo de HMA Wodulo de HMA 1500000 - 1000000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 0000 - 0000 - 0000 - 0000 - 000 - 00			⊑subgra	_{ade} = 10,00	
≥ ₅₀₀₀₀₀ –					
o +					
-10		30 40 50			
	Temperatura del a	aire, C		-	
			re drive	n. www.asphaltins	stitute.org

Materials data inputs-conservative "design" values

Estimated pavement Season Avg. air temperature. F Duration E*. ksi temperature, F 17 weeks Winter 50 58 800 Spring/fall 68 76 21 weeks 625 82 91 Summer 14 weeks 550

Other layer stiffnesses:

 $E_{base} = 30,000 \text{ psi}$ $E_{subbase} = 15,000 \text{ psi}$ $E_{subgrade} = 7,000 \text{ psi}$

Summary of results

		Probat	oilistic		
T _{HMA} ,	Fati	gue	Permanent Deformatio		
in	% below limit ²	Estimated life, years	% below limit ³	Estimated life, years	
10	76.1	5.1	85.2	2.1	
12	90.2	14.2	92.5	5.7	
14	96.8	37.0	97.1	15.7	
16	99.0	74.8	98.8	35.8	

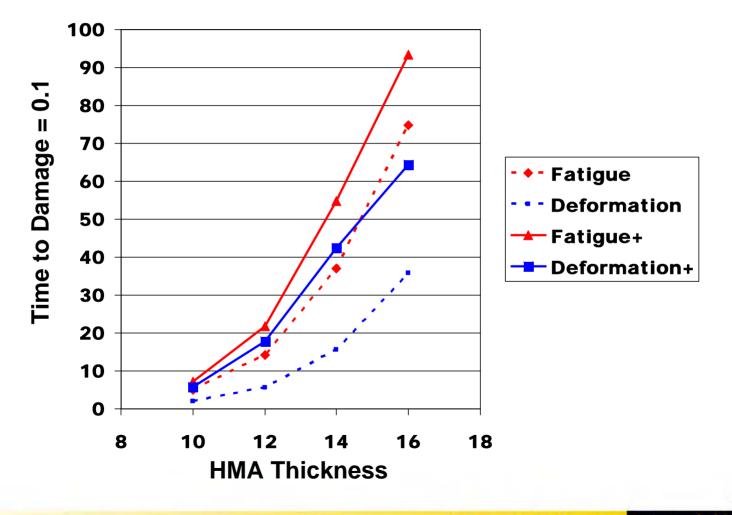
1. Monte Carlo simulation, 5000 cycles

- 2. Fatigue Threshold = -70 $\mu\epsilon$
- 3. Deformation Threshold = $200 \ \mu\epsilon$

What if we raised our requirements for subgrade/subbase/base?

Summary of results, revised

asphalt institute


		Probat	oilistic		
T _{HMA} ,	Fati	gue	Permanent Deformation		
in	% below limit ²	Estimated life, years	% below limit ³	Estimated life, years	
10	82.1	7.2	92.2	5.8	
12	93.6	21.9	97.4	17.9	
14	98.4	54.8	99.1	42.5	
16	99.5	93.4	99.6	64.4	

Other layer stiffnesses:

 $E_{base} = 35,000 \text{ psi}$ $E_{subbase} = 20,000 \text{ psi}$ $E_{subgrade} = 10,000 \text{ psi}$

Fatigue & Deformation

Observations

- Improvement to poor foundation materials can significantly reduce the HMA thickness necessary
 - Proof rolling criterion
 - Consider stiffness/modulus as an acceptance requirement for pavement foundation
 - Intelligent compaction equipment, FWD, LWD, DCP
- Need to collect and analyze FWD data to develop ranges of values to expect seasonally for local climate and materials

Texas Perpetual Pavement Project Locations

- I-35, Waco District
 - McLennan County
 - Hill County, under construction
- I-35, Laredo District
 - LaSalle County, (S. of Cotulla)
 - LaSalle County, NBL (N. of Cotulla)
 - LaSalle County, (S. of first project)
 - Webb County, under construction
- I-35, San Antonio District
 - Comal County (New Braunfels)

Considerations for All Layers

- Initial compaction is critically important
 - HMA must be compacted to a nonporous condition for optimal performance
- Support conditions and lift thicknesses must allow compaction to be achievable
 - Design the pavement foundation!
 - Fine-graded mixtures, ≥ 3X NMS
 - − Coarse-graded mixtures, \ge 4X NMS
 - Consider including loaded wheel test requirements (APA or HWT) for premium mixtures
- Many agencies are reducing N_{des} levels when using asphalt binders that require polymer modification

- ble and easy to use for
- PerRoad is available and easy to use for evaluating pavement designs with respect to mechanistic "perpetual pavement" criteria
- Input data are similar to what are needed when using the "ME Design Guide" developed in NCHRP 1-37A
- www.asphaltalliance.com

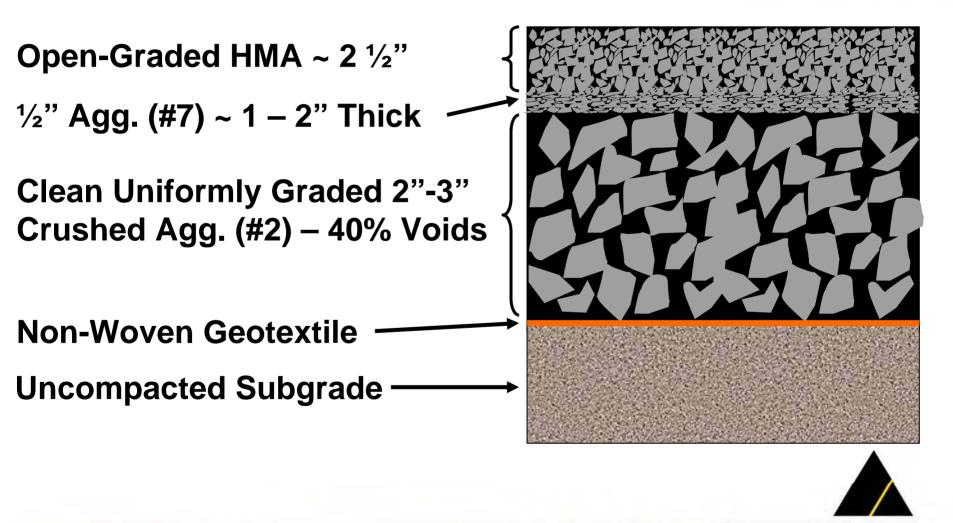
Perpetual Pavement Resources

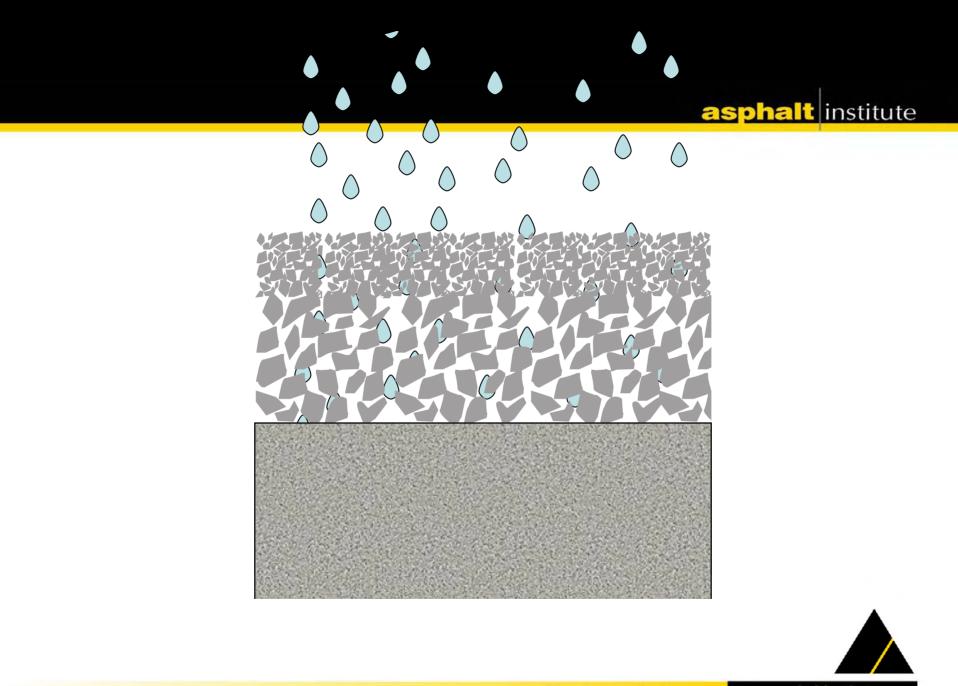
asphalt institute

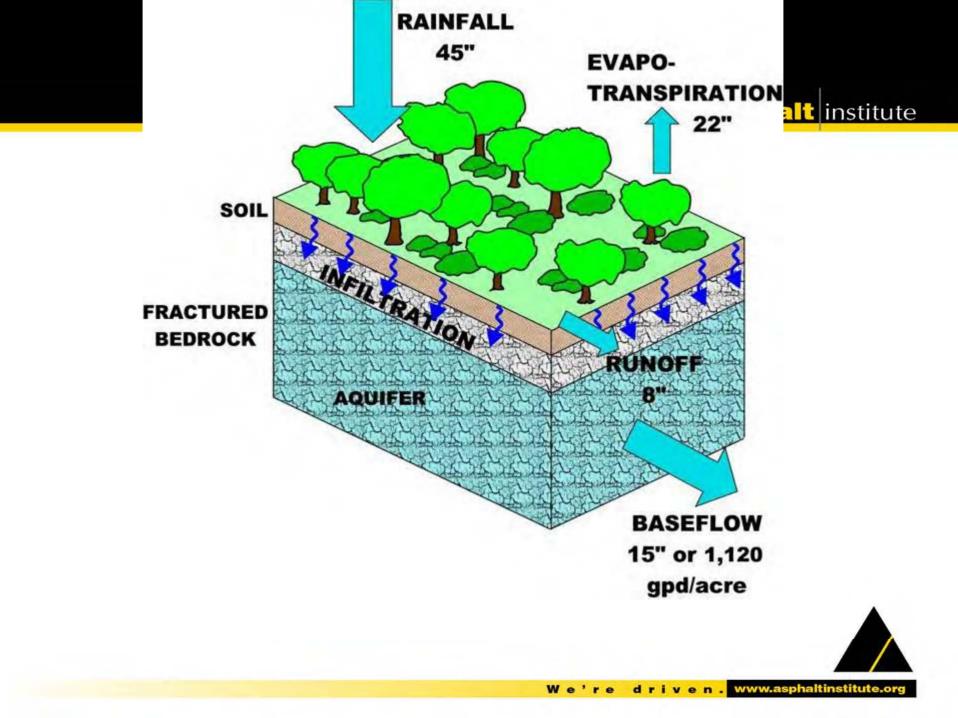
- Check APA website (<u>www.asphaltalliance.com</u>) for references, software, etc.
- Keep alert for articles in trade literature, research reports, etc

TRBC contine	on General Issuer in Aspirali Te	duslogy (A2005)
	Joe W. Binina, Club	
3. Ebs. Brack Round Colling	Theras F. Reven. Scientif: Hours	James A., Scheesenam, Scott Station
iconno Cambia Elissa Comolity	Contra Li Monta Gonid A. Buler	scoursemer R. Garry Takaller
Dale 5. Decker	Tribui S. Kandal	Bounded El. Waterer
Danie II. Denselly	Graphs 31. Kimg	John J. Weigel, Jr.
Fands For	David E. Steere and	Ranty C. West
	Read R. Parl	
	Trodetick D. Toji, 23.9 Aug. Aug. constant	•
Subactive: cologery		Transportation Research Long
Subactive entropy III emircials and construction		National Learneds Cont 2011 Constitution Avenue, N
Sibarike cangery 118 miletali ani comination Volutiz TRII arg		Value al Lesards Con
113 maiotalo del contraction Webnitz TER arg Ter Transportation Research Record a Inford generatoria a asteritiva contrat data derestiva de referencia de contrato data derestiva de referencia de contrato	rans it of the Platianal Howards Council, which indeed quartiests of sectional department. The Plati of Echancer, Marined Academy on Displacencies, indeed concerning to be seen as advant quartiester,	National Lessards Con 200 Constitution Arrows, N Washington, D C 200 Arrows as integrated a statement binard Dermote Consell, pixely will for the thermal Physics, pixely in
13. emiscials and construction Website: TEX arg The Transportation: Account House I Interd generation: Account Journal Interd generation and and interd interdent account of the contemp community of the contempotent in and and accounting of	ining sporting of national importance. The 3 of Internet, Platinus Acculars yes Displacewing, mind community to become national publicate	National Lesonch Con 2.00 Constitution Arrows, N Washington, D.C.200 Arrowstan as integration induitor in the binard Energy Science J, pixely and fart antiferrate Reference, pixely the integration Reference, pixely the integration Reference Science,
113 maiotain and construction Website: TEX arg The Transportation Accounts Hourd & Interd generators an actuality and ind and after the distance Academy manager of the restoration House at ind anastime	ining questions of satisfied importance. The 3 of Internet, Plating Academy of Region wing,	No i un d'Lesourch Con 2 OL Constitution & seans, N Washington, D C 200 A construct on balagendon i advicer i o di Manad Dan ner b Channel, joshig and dari antibaren Manima, joshiga ib Se maji, ila estadoren advicen; combated berrio condition for ser by

Pernetual Bituminous Pavements




Porous Asphalt Pavements


Resources

- Cahill Associates
 - Stormwater magazine article: "Porous Asphalt Pavement with Recharge Beds: 20 Years and Still Working," Michelle C. Adams, Cahill Associates, May/June 2003.
 - <u>http://www.forester.net/sw_0305_porous.html</u>
- Newt Jackson
 - Nichols Consulting Engineers
- Kent Hansen
 - Director of Engineering, National Asphalt Pavement Association
- Environmental Protection Agency (EPA), EPA 832-F-99-023, Storm Water Technology Fact Sheet: Porous Pavement
- University of New Hampshire
 <u>http://www.unh.edu/erg/cstev/porous_asphalt/porous_asphalt-</u>
 <u>spec_mar_05.pdf</u>
- Numerous articles available online

What are Porous Pavements?

REDUCED INFILTRATION THROUGH REGRADED AND COMPACTED SOILS IN GRASSES

> 0" OF INFILTRATION UNDER IMPERVIOUS SURFACES

> > REDUCTION IN BASE FLOW BY 15"/YR UNDER IMPERVIOUS SURFACES

RAINFALL

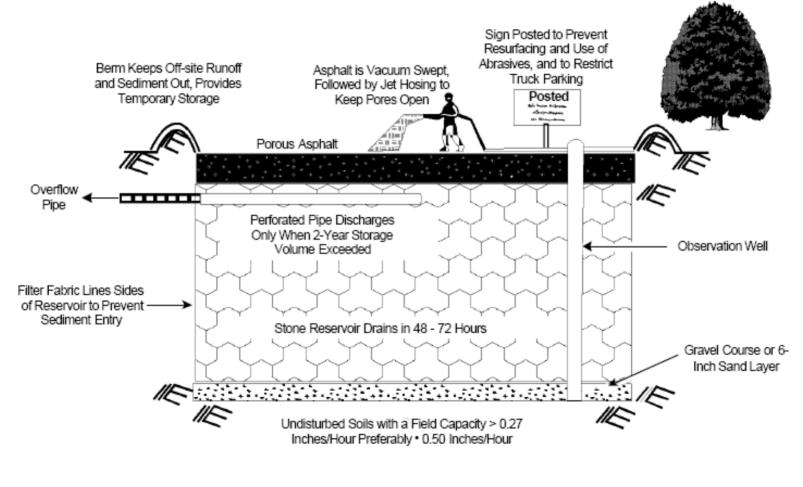
45"/YR

2"

EVAPORATIVE

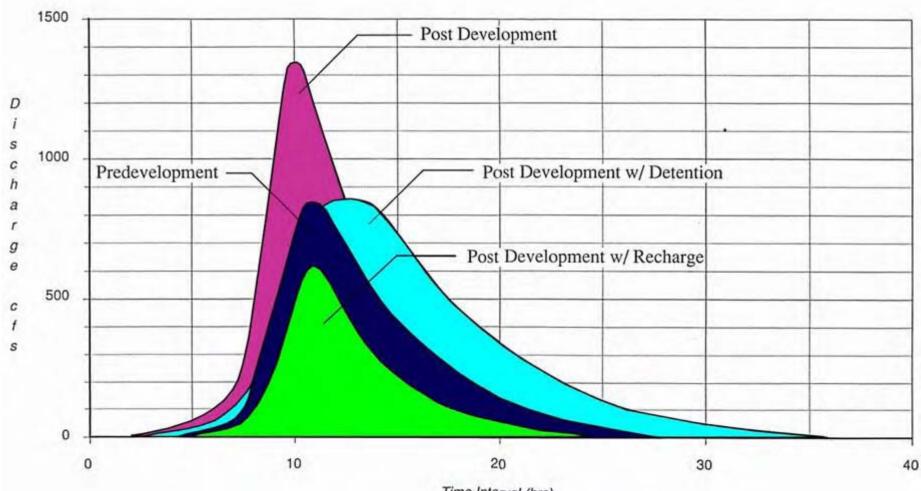
LOSS FROM

IMPERVIOUS

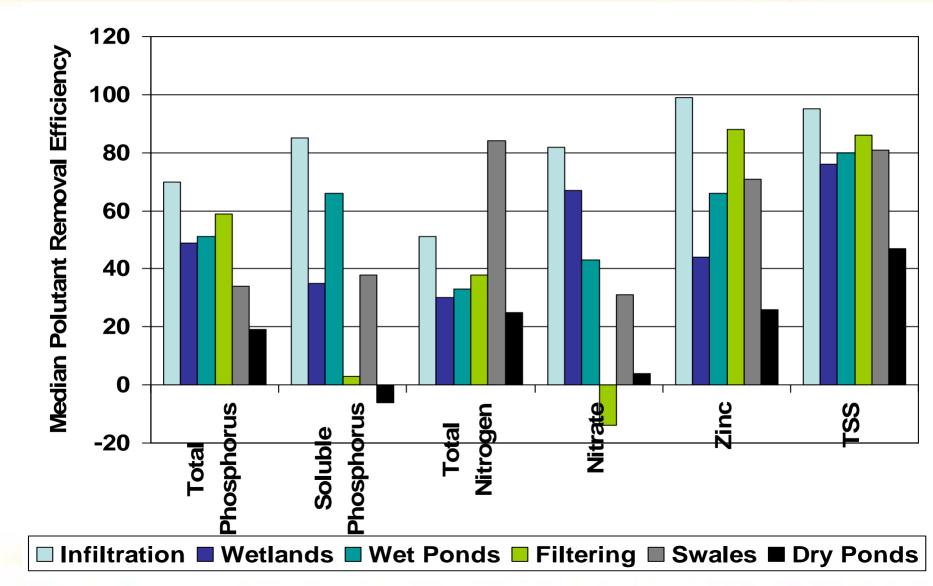

SURFACES

43" RUNOFF FROM

IMPERVIOUS COVER


Typical Porous Pavement Installation

asphalt institute


From: Storm Water Technology Fact Sheet, USEPA, 09/99

Comparison of Detention vs. Infiltration Design Systems

Time Interval (hrs)

Water Quality

Porous Asphalt Pavements-Background

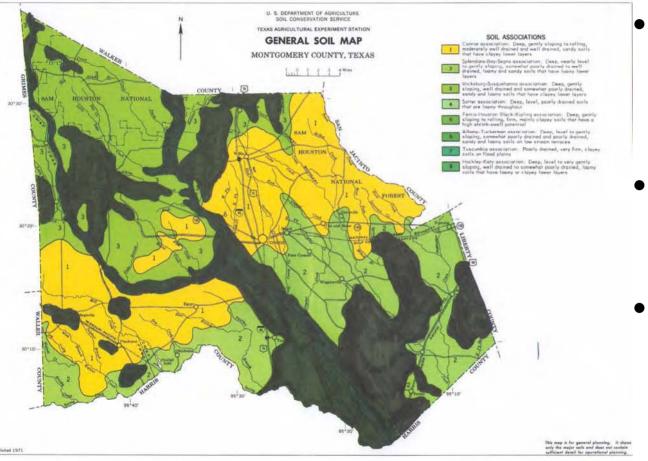
- Early 1970's
 - USEPA Study, Franklin Institute
 - Pilot projects: Delaware, Pennsylvania, The Woodlands
- Current design approach has been used since 1980
 - Development of geotextiles in 1970's
 - Hundreds of projects built
- Porous surfacing mixtures (PFC, OGFC) have become much more widely used since the early 1990's
 - Modified asphalts, fibers, GTR

Typical Applications

- Lightly vehicle loads
 - Passenger vehicle parking lots
 - Low volume roads (limited truck use)
 - Recreational areas
 - Cartpaths, hike & bike trails
 - Pedestrian walkways
- Roadways?

Roadways

- Challenges
 - Variable conditions
 - Cuts and fills
 - Slope
 - Soils
 - Designing for heavy vehicles
 - Utilities
- More likely to see the use of porous wearing surfaces or permeable base/subbase instead of porous pavements


Site Conditions

- Soil permeability/infiltration rate
 - EPA recommends minimum 0.5 in/hr, 3 ft below the bottom of the stone reservoir
 - May consider lower percolation rate (to 0.1 in/hr) depending on site conditions
 - If okay for septic tank dispersion, usually okay for porous pavement
 - Near wetlands, consider using to filter/slow runoff & recharge
- Ideally, 4 ft minimum clearance from the bottom of the system to bedrock or the water table
- Fill not recommended
- Frost
 - Pavement section should exceed frost depth

Montgomery County, Texas

asphalt institute

- Black-shaded areas do not appear to be suitable
- ~ 2/3 of soil types appear to be suitable
- Exceptions exist both ways

We're driven. www.asphaltinstitute.org

Oklahoma County, OK Physical Properties of Soils

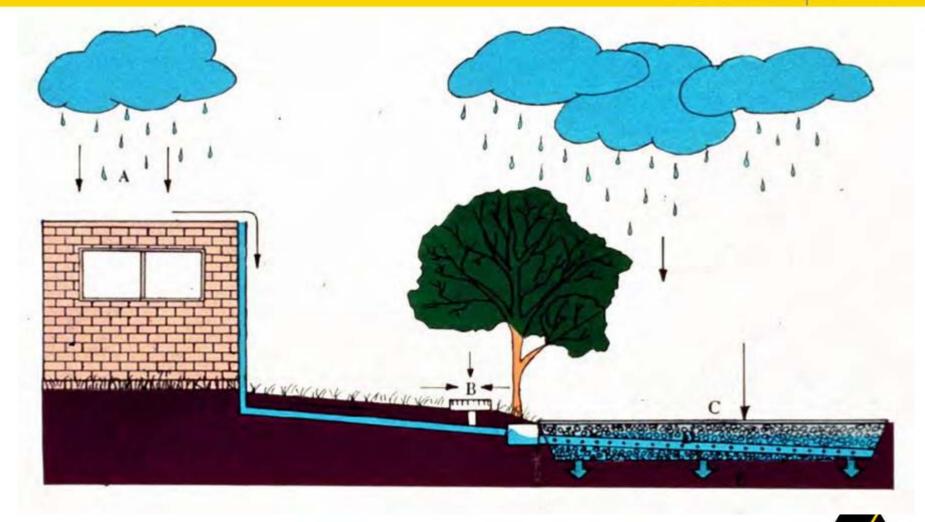
Map symbol	Depth	 Clay	Moist	Permea-	 Available	Linear	Organic	Erosia	on fact	tors	Wind erodi-	Wind erodi
and soil name		ĺ	bulk	bility	water	extensi-	matter				bility	bility
			density	(Ksat)	capacity	bility		KW	KÍ	Т	group	index
	In	Pct	g/cc	In/hr	In/in	Pct	Pct					
hpA:										 		
Ashport	0-5	27-35	1.30-1.60	0.60-2.00	0.15-0.22	3.0-5.9	1.0-3.0	.32	.32	5	7	38
ĺ	5-14	27-35	1.30-1.60	0.60-2.00	0.15-0.22	3.0-5.9	1.0-3.0	.32	.32	ĺ	ĺ	ĺ
ĺ	14-36	18-35	1.40-1.70	0.60-2.00	0.15-0.24	3.0-5.9	0.5-1.0	.37	.37			ĺ
	36-96	18-35	1.40-1.70	0.60-2.00	0.15-0.24	3.0-5.9	0.5-1.0	.37	.37		ĺ	
mbE:										 	 	
Amber	0-9	10-18	1.30-1.55	0.60-2.00	0.13-0.20	0.0-2.9	0.5-1.0	.37	.37	5	3	86
i	9-11	10-18	1.30-1.55	0.60-2.00	0.13-0.20	0.0-2.9	0.5-1.0	.37	.37	İ	İ	i
i	11-22	10-18	1.30-1.60	0.60-2.00	0.13-0.20	0.0-2.9	0.5-1.0	.37	.37	İ	İ	i
ĺ	22-38	5-18	1.30-1.60	0.60-2.00	0.13-0.24	0.0-2.9	0.5-1.0	.37	.37	ĺ	ĺ	İ
	38-84	5-35	1.30-1.70	0.00-2.00	0.13-0.22	0.0-2.9	0.0-0.8	.37	.37	ĺ	ĺ	İ
shA:										 	 	
Asher	0-8	27-40	1.30-1.60	0.06-0.20	0.18-0.22	3.0-5.9	1.0-3.0	.37	.37	5	7	38
i	8-14	27-40	1.30-1.60	0.06-0.20	0.18-0.22	3.0-5.9	1.0-3.0	.37	.37		ĺ	İ
i	14-31	27-40	1.45-1.70	0.06-0.20	0.18-0.22		0.5-2.0	.37	.37	ĺ	İ	i
	31-88	0.10	1.40-1.65	0.60-2.00	0.07-0.24	0.0-2.9	0.0-1.0	.37	.37		i	i

Soils Investigation

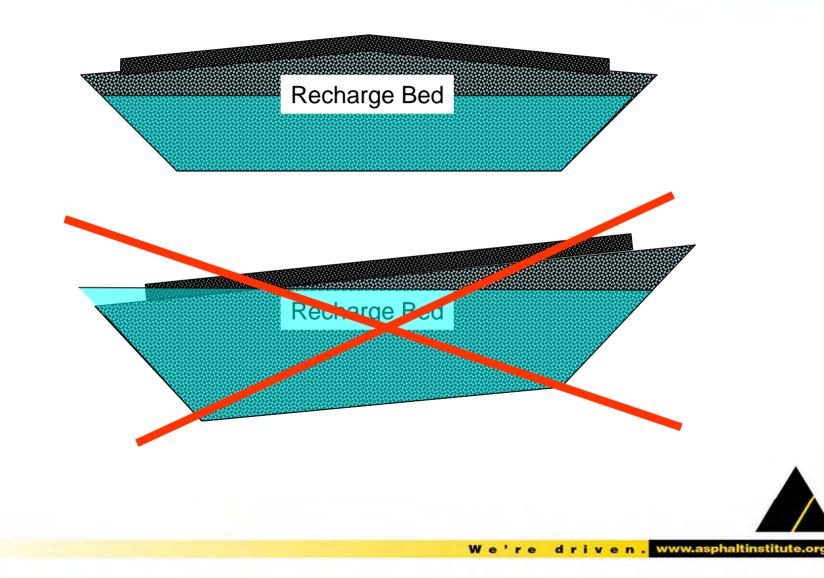
- Excavate 6-8 ft deep test pits/trenches
 - Percolation tests
 - Observe soil horizons
- Drilling
 - Depth to bedrock/claypan
 - Depth to water table

Design Considerations

- Slope as flat as possible
 - Terrace where necessary
 - Use conventional HMA for steep slopes
- Spread infiltration over largest area possible
 5:1 ratio: Impervious area: Infiltration area
- Setbacks:
 - Building foundations:
 - 10 ft downgradient
 - 100 ft upgradient
 - Water supply wells: >100 ft

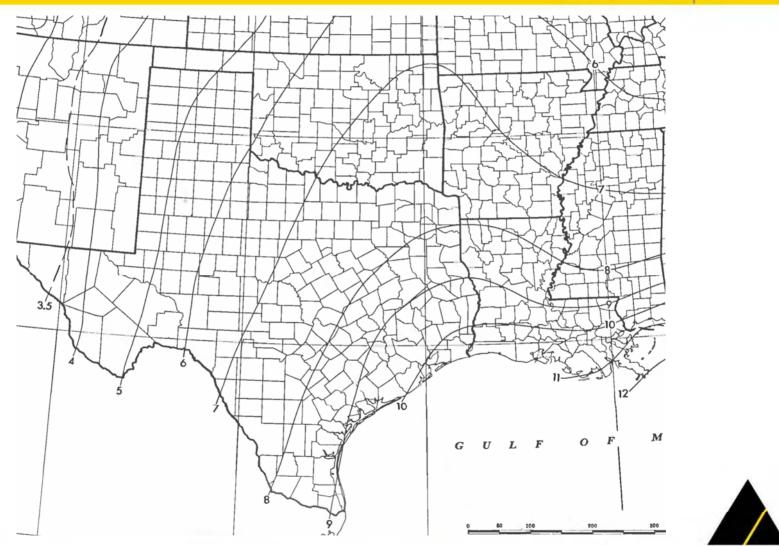


Terraced Parking Lots


Draining Rooftop to Parking Area

Bottom Must Be Flat

Design


asphalt institute

Rainfall

- Typical design event: 6 month/24 hr storm
 - 1 yr, 24 hr intensity ~ 4 in/hr
- Conservative design event: 25 year/24 hr storm
 - Intensities range from 1.4 to 15 in./24 hr
 - ~9-10.5 in/24 hr in SE Texas
- 24 hour drainage time (rec'd by USEPA)
- Meet local & state wastewater mitigation requirements

25-year, 24 hour Rainfall from National Climatic Data Center

asphalt institute

http://lwf.ncdc.noaa.gov/oa/documentlibrary/rainfall.html#atlas14

www.asphaltinstitute.org

Materials Requirements

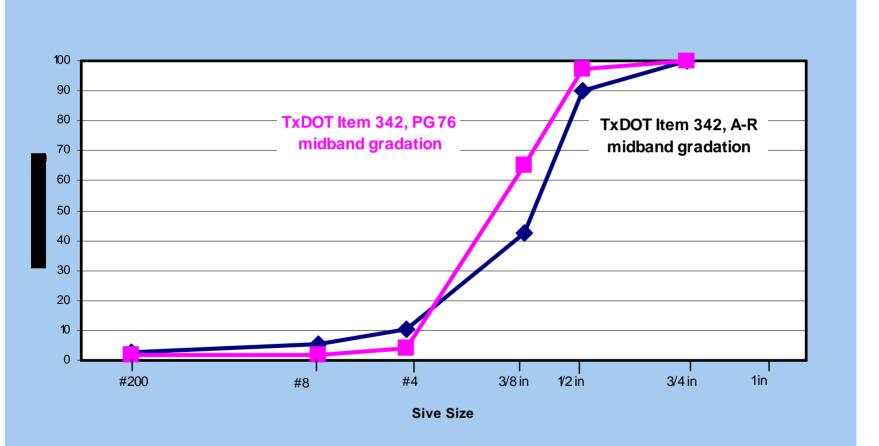
<u>Reservoir:</u> (unbound crushed stone):

- AASHTO #2 (large aggregate)
- AASHTO #5 (smaller aggregate)
 - TxDOT Item 302, Grades 1 or 2

Choke Stone:

- AASHTO Size 7, 78
- TxDOT Item 302, Grade 4, 4S or 5 (cover stone for chip seal)

Drainable ATB: (streets, walkways, cartpaths)


 TxDOT Special Specification Item 3077, "Drainable Asphalt Treated Base"

TxDOT Item 342, Permeable Friction Course

- Lab Molded Density: 78.0 82.0%
- Binder Content 6.0 6.5%
- PG 76-22 + Fibers
 - -5.5 7.0% asphalt binder (polymer modified)
 - -0.2 0.5% cellulose fibers
 - $\ge 1\%$ hydrated lime
- Asphalt-Rubber
 - -8.0 10.0% asphalt-rubber (min. 15% CRM)
 - Fibers, lime not used

Typical Porous HMA Surface Gradations-TxDOT Item 342

Construction Practices

- Build porous pavement last
 - Protect from construction debris
 - Protect from soil laden runoff
- Avoid compacting the subgrade
 - Protect site from heavy equipment
 - When necessary, use tracked or high flotation tires
- Excavate to subgrade
- Place filter fabric
 - Some have placed a sand bedding/leveling course before

Construction Practices

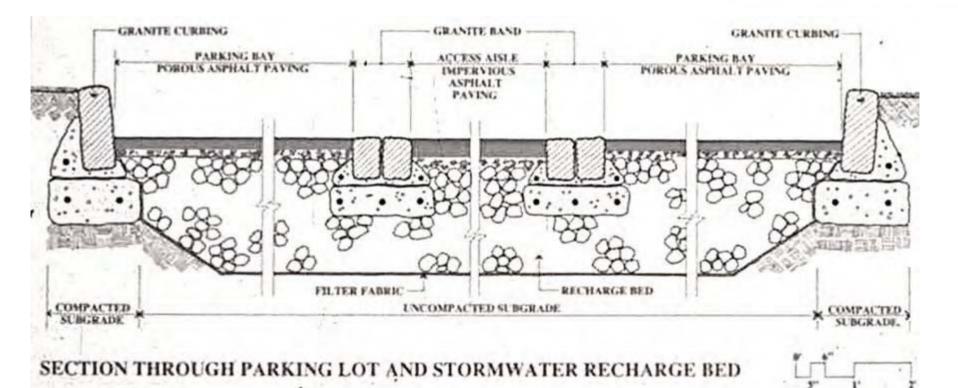
- Place reservoir course 1.5 to 3 in. stone (min. 95% with two fractured faces)
- Place 1-2 in layer of ½ in stone to stabilize the surface of the reservoir course
- Place porous asphalt course (2 to 4 in.) usually rolled with 2-3 passes with 10 ton steel-wheeled roller operated in STATIC mode
 - Consider requiring the use of a tracked paver

Construction Practices

- Restrict traffic for 24 hrs.
 - May not be as important when using modified asphalt binders
- Protect porous pavement from contamination
 - Runoff sediment
 - Construction debris/tracking
 - Keep sediment controls in place until after vegetation is established or areas are well-mulched

Maintenance

- Sign for maintenance and landscaping personnel
- Do not sand or ash for snow or ice, liquid de-icing compounds may be used
- Inspect annually
- Pavement surface may be periodically flushed or power-washed, or vacuumed
- Damaged pavement (<10% area) can be repaired using conventional HMA



- Pavement structure is more expensive than a traditional parking lot, BUT
- Increased costs may be offset by reduced drainage costs
 - Initially reduce or eliminate need for separate detention basin
 - Future reduce mowing/landscape maintenance costs, no need for pesticide/mosquito control

Morris Arboretum Philadelphia, PA-1984

Diagram of infiltration bed at Morris Arboretum



Shared Medical Systems Malvern, PA-1982

Conventional

Porous

BUMP

Conclusions

- Porous pavements may offer an alternative to conventional stormwater mitigation
- Site conditions must be right
- Need to protect pavement from contamination during and after construction
- Properly designed and constructed will last more than 20 years

Information Series 131

Porous Asphalt

Pavements

Resources, References asphalt institute

• NAPA IS-131, Porous Asphalt Pavements

EPA

Porous Asphalt Standard Asphalt

