Foundation Design Principles for Post-Tensioned Foundations in Houston

Robert L. Lytton
John T. Bryant
Dean R. Read

Houston Foundation Performance Association December 10, 2008

Outline

- What's the point of design? (RLL)
- Design details
 - > Soils (JTB)
 - > Site conditions (JTB)
 - ➤ Loads (DRR)
 - > Structures (DRR)
- Summary (RLL, JTB, DRR)

What's the Point of Design?

- Contributing elements
- Design conditions
- Design approaches
- Design criteria
 - > Stresses/strength
 - > Deflections/tolerance
 - > Stiffness
- Objectives
- Constraints

Contributing Elements

- Soils
- Site conditions
- Loads
- Structures

Soils (1/2)

- Expansive
 - > Differential movement
 - > Total movement
- Minerals
 - > Wide variety
 - > Mixed
 - ➤ Large differences in behavior

Soils (2/2)

- Chemistry
 - > Sulfates
 - > Chlorides
 - > Stabilizing chemicals
- Stabilization against
 - > Movement
 - > Moisture movement

Stability Models or Phase Diagrams 290 Soil - Depth of 24-inches

Soluble Sulfates = 18,700 ppm

Exponential Suction Profile for Extreme Wetting and Drying Condition

$$U(Z,t) = U_e + U_o \exp\left(-\sqrt{\frac{n\pi}{\alpha}}Z\right) \cos\left(2\pi nt - \sqrt{\frac{n\pi}{\alpha}}Z\right)$$
 Mitchell (1979)

$$U(Z) = U_e + U_o \exp\left(-\sqrt{\frac{n\pi}{\alpha}}Z\right)$$

Fort Worth Interstate 820

Site Conditions

- Trees
- Slopes
 - Compaction
 - > Natural soils
- Drainage
- Owner impact
- Climate

Loads

- Sustained
 - > Point
 - > Line
 - > Distributed
- Live
 - > Wind
 - > Seismic

Foundation Structures

- Interaction with moving soil
- Point support
 - > Drilled pier
 - > Spread footings
- Beams, strip footings
- Plate (uniform thickness)
- Stiffened plate

Design Conditions (1/2)

- Costs
 - > Design and inspection
 - Construction (labor costs)
 - > Sales
 - > Repairs, buy back
 - > Litigation

Design Conditions (2/2)

- Timing
 - > Site investigation
 - Design and inspection
 - > Construction
- Risk and reliability
 - > General rule:
 - Lighter → larger risk

Design Approaches

- Local experience
- Empirical
- Mechanics
 - > Soil
 - Moisture energy profiles
 - Volume change
 - > Structure
 - Beam
 - Plate
- Mechanistic-empirical

Design Criteria I: Stresses / Strength

- Tension
- Compression
- Shear
- Torsion (twisting moments)

Design Criteria II: Deflections / Tolerance

- Sensitivity of foundation and super structure (Δ/L)
- Differential $(\Delta_c + \Delta_s)$
 - \triangleright As built (\triangle_c)
 - \gt Soil movement (Δ_s)
- Total
- Twisting

Design Criteria III: Stiffness

Substitute for deflection tolerance

• Enough concrete section to handle soil movement

Design Objectives

- Stay in business
- Least life cycle cost
 - Designer
 - > Builder
 - > Owner
- Make profit (?)

Design Constraints

- Meet all design criteria
- Acceptable level of risk
- Within acceptable time limits
- Acceptable costs per design

Post-Tensioned Design Procedure (1/3)

- Soils
 - ➤ Moisture change (realistic range)
 - Surface
 - Depth
 - > Volume change
 - > Lab testing
 - > Moisture active zones
 - Vertical
 - Horizontal

Post-Tensioned Design Procedure (2/3)

- Site conditions
 - > Trees
 - Drainage
 - > Climate
 - > Owner impact
 - > Slopes
- Loads

Post-Tensioned Design Procedure (3/3)

- Structure
 - > Slab-on-ground
 - Soil movement classes
 - None
 - Low
 - Medium and high
 - > Plate-on-uneven surface
- Shape
 - > Rectangular
 - Non-rectangular
- Shear

Foundation Design Principles for Post-Tensioned Foundations in Houston

Robert L. Lytton
John T. Bryant
Dean R. Read

Houston Foundation Performance Association December 10, 2008