Shear Strength of Shallow Soils

Charles Aubeny Associate Professor Department of Civil Engineering Texas A&M University

Issues

- 1. Relevant to practical problems
 - Shallow slopes Organic soils Pipeline embedment
- 2. Technical difficulties
 - Difficult to sample Not amenable to conventional strength tests
- 3. Perspectives
 - Strength measurement Soil suction

Relevant Situations

Difficulties in Measurement at Low Stress

1. Very soft ($S_u \sim 100 \text{ psf}$) – difficult to sample

2. Limitations of testing equipment σ'_{vc} > 600 psf for many devices

Evaluating Strength: Extended Mohr-Coulomb Criterion

 $\tau_{f} = c' + p' \tan \phi' + h_{m} \tan \phi^{b}$ \uparrow Strength
Suction

τ_f C' p' φ' h_m φ^b

- = shear strength
- = effective cohesion
- = net mechanical stress (σ u_a)
- = mechanical stress friction angle
- = matric suction $(u_a u_w)$
 - suction friction angle

Case Histories

Organic soil deposits
 Inorganic strength tests at low σ'
 Shallow slope failures

Sacramento-San Joaquin Delta Peat Deposits

Levee Fill - Sandy

Upper Holocene - Loose sands, soft clays

Holocene Organic - Peat

Lower Holocene - Loose sands, soft clays

Pleistocene - Dense sands, stiff clays

Sherman Island Soil Density

Sherman Island Pore Pressures

Sherman Island Effective Stress Profile Undrained Strength Ratio, s_u / σ'_{v0} SHANSEP (Ladd, 1986) USR = s_u / σ'_{v0} = S (OCR)^m______

• OCR = over-consolidation ratio = σ'_{p}/σ'_{v0}

• S = 0.22 Inorganic Soils (excl. high S_t) 0.25 +/- 0.05 Organic Soils (excl. peat)

• m = 0.8

Parameters independent of stress level

Measured Undrained Strength Ratio, DSS

Sherman Island Cross Levee Study

Figure 6 - Design Strength Envelope 1.0 bsl Strength 9.0 8.0 BYRON SHERMAN TWITCHELL Normalized 0.4 0 0.2 0.0 1.5 2.0 2.5 0.5 1.0 Effective Vertical stress (ksf) (1 ksf = 47.9 kPa)

> Brovold & Sisson (1995) Byron Tract Sherman Island Twitchell Island

Direct Correlation, $s_u vs.\sigma'_{v0}$

Previous data supplemented by new tests in 2008

Conclusions from Peat Data

- Strength behavior linear
- Not normalizable due to intercept
- Undrained strength ratio tends to infinity
- Trend lines converge to a point (limited data for OC soil)
- Consistent w/previous data if strength intercept considered
- Physical source of intercept: fibers (?)

Best fit equation: $s_u = s_{u0} + \sigma'_{v0} S (OCR)^m$

- s_{u0} = strength intercept ~ 5.5 kPa
- S = 0.27
- m = 0.8

Norwegian Geotechnical Institute (NGI) Investigations Lunne & Andersen (2008)

- Direct simple shear tests
- Inorganic soils
- Saturated
- Remolded (no cementation)

NGI Undrained Strength Ratio Data

Direct Correlation, $s_u vs.\sigma'_{v0}$

Comments on NGI Data

- Strength behavior linear
- Not normalizable due to intercept
- Undrained strength ratio tends to infinity
- Trend lines converge to a point
- Consistent w/previous data if strength intercept considered
- Physical source of intercept: (?)

Best fit equation: $s_u = s_{u0} + \sigma'_{v0} S (OCR)^m$

- s_{u0} = strength intercept ~ 4.5 kPa
- S = 0.15
- m = 0.8

Shallow Slope Failures

Beaumont Clay Slope Failures Kayyal and Wright (1991)

- Compacted fill, c'=0
- Age of Slopes 12-31 years
- Slope Angles $\beta = 16-26^{\circ}$ from horizontal
- Depth of Slide Mass 0.6-1.5 meters
- 18 Failures
- Estimated Friction Angle $\phi' = 25^{\circ}$

Paris Clay Slope Failures Kayyal and Wright (1991)

- Compacted fill, c'=0
- Age of Slopes 14-19 years
- Slope Angles $\beta = 18-23^{\circ}$ from horizontal
- Depth of Slide Mass 0.6-3 meters
- 16 Failures
- Estimated Friction Angle $\phi' = 25^{\circ}$

Back- Analysis from Infinite Slope Analysis Aubeny & Lytton (2004)

Critical elements of analysis:

- 1. Characterization of flow state
- 2. Pore pressure distribution
- 3. Shear-induced pore pressures

Infinite Slope Analysis: Flow State

Uniform pore fluid pressure, u (negative) Non-uniform total head $h = z + u/\gamma_w$

Dynamic conditions: Flow parallel to slope ⇒ Major destabilizing effect (failures observed on very flat slopes

Pore Pressure Distribution

Stability Equation for Infinite Slope

Back-Calculated Suction and Dimensionless Time Factors at Failure for Shallow Slides in Beaumont Clays

Case	Back-Calculated Surface Suction, $a_f = 0$		Back-Calculated Surface Suction, $a_f = 0.7$		Time Factor at Failure, <i>T_f</i>	
	u _{w0} (kPa)	(pF)	u _{w0} (kPa)	(pF)	α = 0.044 m²/yr	$\alpha = 0.126$ m ² /yr
2 3 4 5 6 7 8 9 10 11	-5.1 -2.6 -6.8 -3.2 -10.1 -2.7 -7.7 -3.1 -7.8	1.7 1.4 1.4 1.8 1.5 2.0 1.4 1.9 1.5 1.9	-13.3 -7.1 -8.7 -15.5 -8.8 -21.7 -7.4 -15.4 -7.3 -18.4 10.4	2.1 1.9 2.2 2.0 2.3 1.9 2.2 1.9 2.3 2.3	0.88 2.79 1.29 0.67 1.15 0.44 1.66 1.09 2.54 0.38	2.61 8.32 3.85 2.01 3.44 1.31 4.95 3.25 7.56 1.15 1.61
12 13 14 15 16 17 18 Average Std. Dev.	-0.5 -3.5 -3.8 -4.7 -2.4 -6.1 -3.8 -5.0 2.5	1.9 1.6 1.7 1.4 1.8 1.6 1.7 0.2	-19.4 -9.3 -10.3 -10.3 -6.2 -13.0 -10.3 -12.0 4.8	2.3 2.0 2.0 1.8 2.1 2.0 2.1 0.2	0.54 0.81 0.59 1.05 2.35 1.47 0.93 1.23 0.75	2.42 1.77 3.12 7.00 4.38 2.78 3.67 2.25

Best estimate of suction at surface:

$$u_0 = 7.8 \text{ kPa}$$

Case	Back-Calculated Surface Suction, $a_f = 0$		Back-Calculated Surface Suction, $a_f = 0.7$		Time Factor at Failure, <i>T_f</i>	
	u _{w0} (kPa)	u _{w0} (pF)	u _{w0} (kPa)	u _{wo} (pF)	α = 0.044 m²/yr	α = 0.126 m²/yr
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	-4.9 -7.5 -10.8 -8.9 -16.0 -8.8 -8.9 -13.2 -6.2 -6.4 -2.1 -6.4 -13.2 -13.2 -13.2 -4.9 -6.4	1.7 1.9 2.0 2.2 2.0 2.1 1.8 1.3 1.8 2.1 2.1 2.1 1.7 1.8	-12.7 -16.5 -26.9 -21.3 -37.2 -18.3 -21.3 -27.5 -15.9 -14.9 -5.8 -14.9 -27.5 -27.5 -27.5 -12.7 -14.9	2.1 2.2 2.4 2.3 2.6 2.3 2.3 2.3 2.4 2.2 2.2 1.8 2.2 2.4 2.4 2.4 2.4 2.1 2.2	0.62 0.48 0.15 0.27 0.10 0.66 0.27 0.28 0.38 0.60 2.32^* 0.62 0.29 0.29 0.29 0.62 0.63	$\begin{array}{c} 1.85\\ 1.42\\ 0.44\\ 0.79\\ 0.29\\ 1.98\\ 0.79\\ 0.83\\ 1.12\\ 1.79\\ 6.92^*\\ 1.89\\ 0.88\\ 0.88\\ 1.85\\ 1.89\end{array}$
Average Std. Dev. *Excluded	-8.6 3.8 from avera	1.9 0.2 ge.	-19.8 7.9	2.3 0.2	0.42 0.20	1.25 0.59

Back-Calculated Suction and Dimensionless Time Factors at Failure for Shallow Slides in Paris Clays

Best estimate of suction at surface:

Estimated Strength: Wetted Soils for Zero Applied Stress

- Beaumont Clays:
 s_{u0} = 7.8 kPa x tan 25⁰ = 3.6 kPa
- Paris Clays:
 s_{u0} = 12 kPa x tan 25⁰ = 5.6 kPa

Note: NGI data showed $s_{u0} = 4.5$ kPa

Implications of Shallow Slope Studies

- •Wetting of slope triggers failures
- Suction decreases as wetting occurs
- Suction does not trend to zero
- Lower limit of suction on order of 7-12 kPa

 Lower suction limit consistent with totally independent assessment of strength at low stress levels measured by DSS

Conclusions

- Non-zero strength intercept in peat expected
- Non-zero intercept in inorganic soils also
- Lower bound strength & suction consistent
- USR approach not applicable at low stress
- SHANSEP still applicable if modified

Thank You!