Analysis of Four Load Tests on Augered Cast-in-Place Piles in the Texas Gulf Coast Soils

Raghu Dass, PE, Woodward Vogt, PE, and Frank Ong, PE

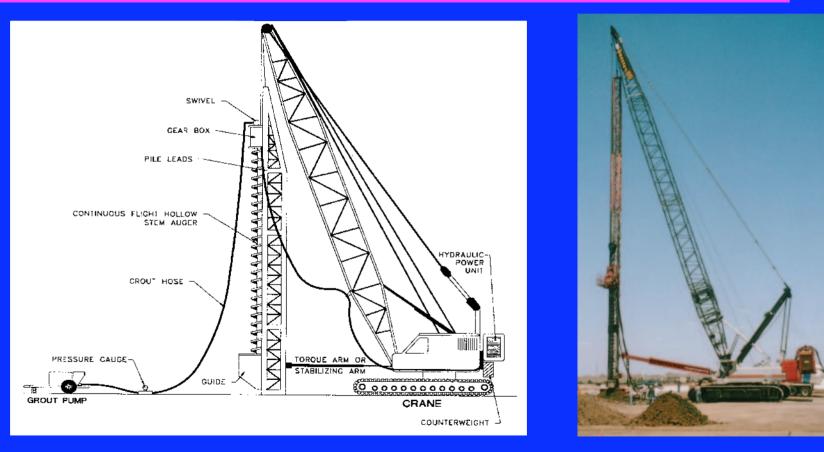
Presented By: Raghu N. Dass, Ph. D., P.E. TSI Laboratories, Inc.

Advantages of ACIP Piles

 Speed of Installation High Capacity Economic Adaptable to Limited Access Areas Minimal Vibrations from Installation Installation Independent from Soil Conditions

Two Past Areas of Concern

 Soft or loose soil conditions have the potential to result in removal of excessive soils or necking of the pile when using continuous flight auger


 Perceived lack of quality control because you can't see what is being installed.

New Trends

- New installation techniques and equipment: robust equipment with automated grout pumping capability
- New quality control and quality assurance techniques

Typical ACIP Pile Installation Rig

Pile Installation

 Drill to required depth Begin pumping grout (blow plug) Build up grout head around outside of auger Withdraw auger at constant rate Continue pumping grout until auger tip reaches ground surface Pumped volume should be at least 115% to 150 % of the theoretical volume

Pile Installation - Completion

Remove spoils from ground surface
Clean out and screen top of pile
Install reinforcing steel or access pipes for sonic integrity logging
Dip or add grout to establish top of pile grade

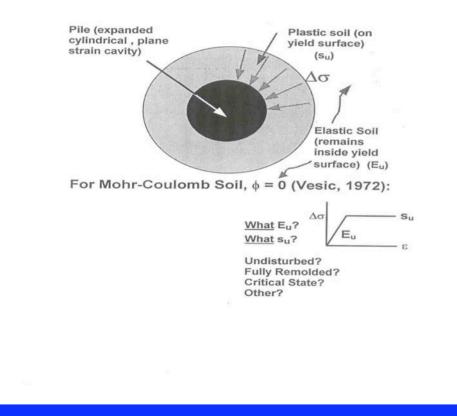
Reinforcement Cage Installation

Applicable Soil Conditions

Pile Type	Main Soil Condition	Soil Layer/Pile Diameter Limitations
ACIP Pile	Medium dense to very dense sand ; soft to hard clay ; soft rock	If a loose sand layer is present diameters should be limited to 24- inch; if the loose sand is more than 20 ft thick the diameter should be limited to 16-inch.
Partial Displacement ACIP Pile	Loose to dense sand with blow counts less than 50	For any diameter stiff, firm and soft clay layers should not exceed 15 ft, 20 ft and 30 ft thick, respectively
Full Displacement ACIP Pile	Loose to medium dense sand with blow counts less than 25	For any diameter stiff, firm and soft clay layers should not exceed 5 ft, 10 and 20 ft thick respectively; dense sand layers should not exceed 10 ft

Equipment Specifications

Pile Type	Gearbox Torque	Crowd/Gearbox Weight	Drill Rig Horsepower
Typical ACIP	36,000 ft-lbs	5,000 lbs (wt)	350 hp
Large/Deep ACIP	88,000 ft-lbs	10,000 lbs (wt)	750 hp
LHR ACIP	21,000 ft-lbs	3,000 lbs (wt)	200 hp
Partial Displacement ACIP	150,000 to 180,000 ft-lbs	15 to 20 tons	250 hp
Full Displacement ACIP	150,000 to 180,000 ft-lbs	15 to 20 tons	250 hp


Design Methods – Summary

 Clay: The α Method (FHWA/Reese & O'Neill,1999) TxDOT (2000) and API Method – Total Stress

 Sand: The β Method (FHWA,1999) and Zalada and Stephenson (2000), McVay (1994), Vipulanandan, et al. (2005) – Effective Stress

 Jardine and Saldivar (1999) observed failure surface away from the pile-soil interface into the native clay – Conservative Design

Mohr-Coulomb Failure Criteria

Design of ACIP Piles – The α Method in Clays FHWA α = 0.55, TxDOT α = 0.70

- O'Neill (2001) The α method is appropriate for clays using total stress principle. The undrained shear strength, s_u can be easily determined in the lab using UU Triaxial testing.
- TXDOT uses a limiting end bearing resistance of 380 kPa
- Pile tip resistance is neglected in clays.

• At Δ = 5% pile dia = 23mm

 $Q_T = R_S + R_B$ $R_s = \sum f_{max} A_s$ $R_{\rm B} = cN_{\rm c}A_{\rm B} = 9s_{\rm u}A_{\rm B}$ The α method, $f_{max} = \alpha s_{u}$ f_{max} = Peak unit side shear α = Adhesion factor $s_{ij} = \text{Shear strength}(UU, \phi = 0)$

The β Method, $f_{max} = \beta \sigma_v'$ (β =K tanφ)

Design of ACIP Piles – The β Method in Sands - FHWA, McVay (1994), Stephenson (2000)

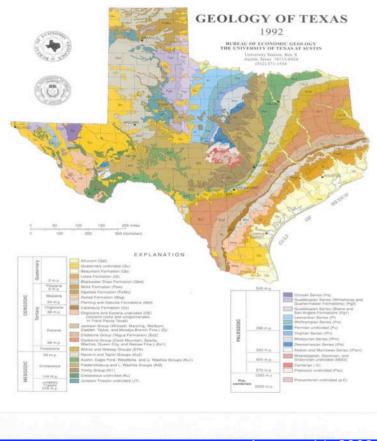
 McVay (1994) – The β method is used for sands using effective stress principle including coefficient of lateral earth pressure, K and friction angle φ['].

$$f_{S} = p_{O}' K_{S} \tan \phi = \beta p_{O}' \le 150 \text{ kPa}$$

$$p_{O}' = \text{average effective vertical stress along the pile}$$

$$K_{S} = \text{earth pressure coefficient} = 1.1$$

$$\beta = \text{friction factor } (0.2 \text{ to } 1.0)$$


TxDOT, limiting side resistance is 100 kPa. According to FHWA Method, β varies with depth.

$$\beta = 1.5 - 0.135 z^{0.5}$$
 $0.2 \le \beta \le 1.2$

Local Practice - Texas Gulf Coast

- ACIP piles are designed as "Friction Piles"
 Beaumont Formation: Overconsolidated, high plasticity clays and lightly OC sand
 Project Soil Properties
- Undrained shear strength- 50 kPa to 280 kPa
 Plasticity Indices = 15 to 44
 SPT N₆₀ = 10 to 55 per 305 mm penetration

Geology of Texas Gulf Coast

FPA

Four Load Tests on 460-mm Diameter ACIP Piles in Houston, Texas

- 33-Story Residential Tower at 1200 Post Oak Boulevard: Uniform soil profile including fat clays and lean clays – 23m long piles (75 ft)
 - Load Test # 1 and # 2
- 30-Story Residential Tower Dominion Post Oak at 2323 McCue Street: Mixed soil profile including clays and sands – 21m and 26m long piles (70 ft & 85 ft)

Load Test # 3 and # 4

Dominion Post Oak

Boring Logs Showing Site Soils

LOG OF BORING						100.05 00000																			
PROJECT: Multi-story Tower and Parking Garage 1200 Post Oak Boulevard PROJECT NO. 00-1181							Г	LOG OF BORING Project: Dominion Post Oak Project																	
1		Hou	uston,	Texa	IS							BORING NO. B-5		McCue Road and Guilford Court Boring Number B-4					PCI Project 02-1133						
CLIENT: Hanover R.S. Limited Partnership Houston, Texas												DATE 11/11/00 Houston, Texas					Surface Elevation: 61.20								
												Client: Whiteco Residential					Drilled: 10/7/02								
	EIEI	D DATA					DAT	ORY				DRILLING METHOD(S):		Chicago, Illinois Sheet 1 of 2								Sheet 1 of 2			
	FIEL		-	IAT	TERB		T			`		A Failing 36 truck-mounted drill rig with 4" diameter auger was used. The borehole was dry augered to 30" depth, then wet-rotary methods were used		F	IELD DAT	TA	LABORATORY D					A		1	Drilling Method(s):
			(%)	-	LIMIT	S	4					to complete the boring.			8 3	-	ATTERBERG							1	A Mobil 8-59 truck-mounted drilling rig with 4-in. diameter auger was used. Dry-auger drilling methods were used to 15-ft depth then wet-rotary drilling.
			N L			ă			8	PRESSURE		GROUNDWATER INFORMATION:		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						-	1	methods were used to the 100-ft termination depth.			
			K QUALITY DESIGN	LE	PLASTIC LIMIT	PLASTICITY INDEX	⊢	. ·	Z	ESS .	2 .	Water was encountered at 28.0' depth during drilling on November 11, 2000, and rose to 26.0' depth within 15 minutes. The borehole was			tampi (ampi)		1				l fé		12		Groundwater Information: Water was encountered during dolling on October 7, 2002 at 13-ft depth.
BOL	F				1 2 1	Li5	SIT S	UISS H	STR 1	G PI	15 15	backfilled upon completion; therefore, no additional water level data were obtained			Total, 1	10	April 1	17	2	2	No.	18	18		Within 5 minutes, the borehole sidewalts caved at 12.6-ft depth.
SYN	DEPTH (FT)	MPLES BLOWS/F TONS/SC TONS/SC	LO LO	LIQUID LIMIT	LAS'	LAS.	NDS/NDS/	PRE	FAILURE STRAIN	ENIL .	MEN INUS	SURFACE ELEVATION: 56.0		a a	tion the	the second	2 X	12	3	All it	100	1 to	ł	2	
SOIL SYMBOL	H (N: BL		LL		PI	DRY DENSITY POUNDS/CU.FT	COMPRESSIVE STRENGTH	FAIL	CONFINING PI	OTHER TESTS/ COMMENTS	DESCRIPTION OF STRATUM	0		mpie	N N N	Moisture C	13	a i	<u> </u>	ļģ,	. 3	1 ie	800	
	1	Ú	-10			-			-	-		2" ASPHALT 6" CRUSHED SHELL		8 8	0/ 2.5		2 2	u	PL F	N 8	52	1 2	8	8	DESCRIPTION OF STRATUM
	2 -	P = 2.25 P = 3.0	23		23	33					%-200 = 89	6" CRUSHED SHELL		8	P=0										LEAN CLAY (CL): very stiff, dark gray - with gravel & limestone pieces to 2'
	3 4				2.0	00					78-2.00 = 0.5	shell fragments	8	Ø.	P=1	- L		+	\vdash				+	-	- soft below 2'
	5 -	P = 2.5	22									Very stiff dark gray FAT CLAY (CH) with ferrous nodules		8 °	P=3	- L	+	-	\vdash		-	-	+	-	FAT CLAY (CH): stiff, gray
	7	P = 3.25	22	63	21	42	103	2.79	7.5		%-200 = 89	- stiff below 4 - very stiff, gray below 6'		絰	-12N = 16	- H	+-	+	\vdash	+		-	+		LEAN CLAY (CL): very stiff, gray SILTY SAND (SM): medium dense, red & gray
	8 -	P = 3.75	23					.				- tan, red & gray with calcareous nodules below 8'	2012	10	XN=17	· /	15		NP N	P	1		1.		SILTT SAND (SM): medium dense, red & gray
	9 - 10 -													1-	11	L									
	11 -	P = 3.5										Very stiff tan, red & gray SANDY LEAN CLAY (CL) with calcareous & ferrous nodules	2023	15	N = 20) ¥									POORLY GRADED SAND WITH SILT (SP-SM):
	12 - 13 -]												Ht .	1										medium dense, brown & gray
1	14.	P = 4.5	14	38	17	21					%-200 = 61	- very stiff-hard below 13'	- 63	龀	-N = 16		1,7	NP	NP N		1				
	15 - 16 -	7											Ř	20	1	´	1.			1.	1				
	17 -												0000	雛										- I	
	18 19 -	P = 4.5											- 23	1- 25	1X = 38										- dense below 23%
	20	2											1	推	1										
	21 - 22 -												. 8	棼	-XN=14		-					+-	+		LEAN CLAY WITH SAND (CL): stiff, reddish brown
	23 24	P = 3.25	22	+		-	104	1.82	9.5			Stiff red, tan & gray FAT CLAY (CH) with calcareous		∦ ³⁰	11								1		with slickensides
	24 25										1	nodules		8	1 P = 4.1	5 4	a			112	2000	15.1	0		
	26 - 27 -													35		- I.	- I			1.12	3850	1.0.1	1		- very stiff below 33'
	28		*											Æ	11										
	29 - 30 -										%-200 = 65 (Particle size)	Tan, red & gray SANDY LEAN CLAY (CL)		₹ 40	P=4/	•						1		· · · ·	
	30 -	7							-	-	ļ,			€ ~	Л										
	32 33											Very stiff red & gray FAT CLAY (CH) with calcareous nodules & slickensides		a	N = 77	-	95	30	20 19	+		+	-		LEAN CLAY (CL): hard, reddish brown
	34 -	P = 4.25	25	66	28	38	102				%-200 =100			₹ 45	₽ ~ ~″		30	39	20 11	1					LEAN CEAT (CL): hard, reduish brown
	35 36 -	8									(Consolidation)		8	8	11										SILTY SAND (SM): dense, reddish brown
	36 -												1080	- 50	<u>⊠</u> N=32		36	19	18 1						
	38	P = 4.5	19				110	2.55	8.1	20	(See remarks)		5	1	1										
	39 - 40 -								1		L/D < 2.0		ECHI		- 	H	+-	\vdash					\vdash		FAT CLAY (CH): hard, reddish brown with
	41 -												eeo /	- 55	1										slickensides
W.	42 -												-4	2	1							1			
5///-	44 -	P = 4.5										- very stiff-hard, red below 43'	1	60	P=4.5		1			111	2600				- very stiff below 58"
			PEN	ETP	ATIO		EST	RESI	STA	NCE		REMARKS:	8 F	Remar	ks: 1. Ele Suryey	vation (of gro 6, Har	und si tris Co	urface i unty, 1	interpoli exas pr	ated fro	m To	oogra	phic Su	invey of 0.8531 Acres, in the William White nd Associates, L.P., dated August 2002. dix B.
E P	P - STANDARD PENETRATION TEST RESISTANCE P - POCKET PENETROMETER RESISTANCE T - POCKET TORVANE SHEAR STRENGTH T - POCKET TORVANE SHEAR STRENGTH P - POCKET TORVANE SHEAR STRENGTH					DIEC		2. • de 3. The	one-d	sampl	le faile tional	ed alon consol	g a slici dation	kenside curve is	d plar	ie ded ir	Appen	dix B.							
BT	- PO(CKET TO	RVA	NE S	SHEA	AR S	TRE	NGTH	ł			patched.	ě_		4. The	boreh	iole wa	as bac	kfilled	with cul	ttings.			++++++	Paradigm Consultants, Inc.
											Δ_5	Paradigm Consultants, Inc.											A	4	

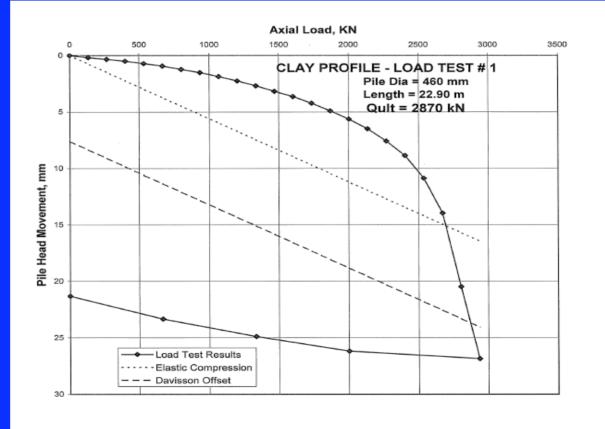
Full-Scale Pile Load Tests

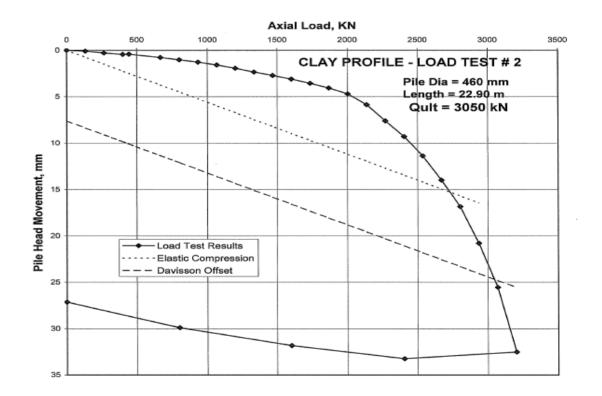
- Full-scale load tests are routinely conducted to verify the design load as part of foundation design before construction of ACIP production piles.
- Static axial compression load tests on piles are conducted according to ASTM D 1143-94.
 Quick Test: each load step at 5% of design load maintained for 5-minute, loaded up to design load or capacity of the reaction frame, and unloaded after failure or 25 mm settlement limit

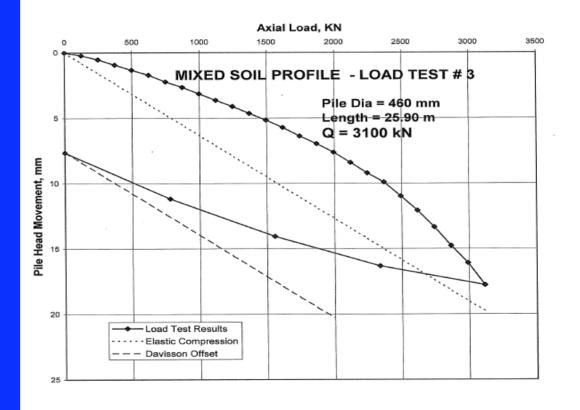
Load Test Setup

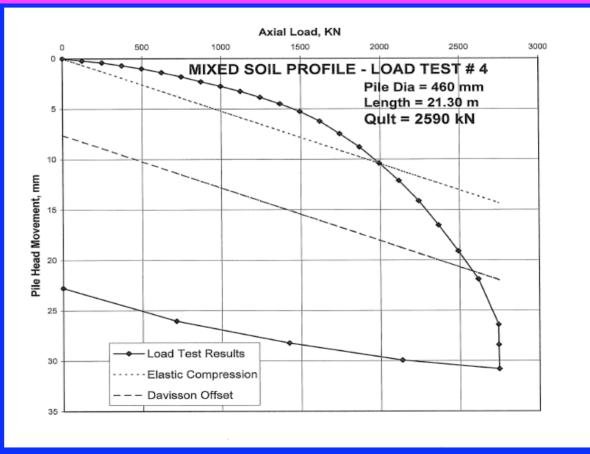
January 14, 2009

Instrumentation




January 14, 2009


A Happy Camper



January 14, 2009

Analysis of Load Test Data

- Ultimate pile capacity was determined for each from load-displacement curve based on Davisson offset limit (QL/AE + 0.15 + D/120).
- An end bearing resistance of 60 kN was deducted from the ultimate capacity to determine the side resistance. Load transfer to the soil occurs through the effective pile length. TxDOT limiting tip bearing = 380 kPa

Comparison with FHWA Method: The β value varied from 0.5 to 1.1

Table 1. Measured and predicted ultimate pile capacities with the calculated α values.

Pile ID	Pile Diameter (mm)	Pile Length (m)	Ultimate Test Capacity Q, (kN)	Calculated α values	FHWA Q _t (kN)	[Q _t] _М / [Q _t] _Р	Side Resistance [Qs] _M / [Qs]P
1	460	22.90	2940	0.79	2040	1.44	1.45
2	460	22.90	3070	0.84	2040	1.50	1.52
3	460	25.9	3110	0.75	2225	1.40	1.40
4	460	21.30	2620	0.72	2020	1.30	1.31

*Test stopped at design ultimate pile capacity and 88% of maximum capacity of the reaction frame.

[Q_{d]M}=Measured ultimate pile capacity from load-displacement plot.

 $[Q_{t}]_{P}$ = Predicted ultimate pile capacity using the α method and the β method.

Conclusions

- Side resistance of ACIP Piles in Beaumont Clays is being predicted conservatively.
- Based on the data, the α value ranged from 0.72 to 0.84 with an average of 0.78.
- No appreciable change in the β value in sands was observed.
- An α value of 0.75 may be used for design of ACIP in Beaumont Clays.
- Cost of load tests justifies the saving in foundation costs due to the higher pile capacity measured in the load tests.