Case Study #1

Poor Geotechnical Engineering + Poor Structural Engineering + Poor Construction

Poor Foundation Performance

Massive Building Distress

Location: McKinney, Texas

Size/Use: 60,000 SF - Office Building

Age: Constructed in 2006

Foundation: Slab-on-Grade, Perimeter Grade Beams, Perimeter Piers

Framing: Pre-engineered Steel Rigid Frame

Veneer: Aluminum Siding and Stone

Interior: Gypsum Board and Temporary Partitions

Roof: Standing-Seam Metal Roof

REPORTED DISTRESS

- Uneven floors
- Foundation cracking
- Exterior veneer distress
- Interior veneer/finish distress
 - Gypsum board separations
 - Multiple inoperable doors
- Water intrusion at grade

INVESTIGATION

- Documentation of Distress
- Relative Elevation Survey
- Forensic Plumbing Test
- Design Documentation Review
 - Geotechnical Engineering
 - Structural Engineering

Documentation of Distress

- Graphic Documentation
 - Interior Distress Mapping
 - Exterior Distress Mapping
 - Foundation Fracture Mapping
- Photographic Documentation

Distress Map

Distress Map (Close-up)

Uneven Floors

Foundation Fractures

Foundation Fractures

Exterior Veneer Distress

Interior Veneer/Finish Distress

Inoperable Doors

Relative Elevation Survey (2-D)

+ 3 3/8"

Total Out-of-Levelness = 4 1/4"

Relative Elevation Survey (3-D)

DESIGN REVIEW/ANALYSIS

Geotechnical Engineering

Pre-Construction Geotech Report

- 2 borings (20'-25' deep) performed in 60,000+
 s.f. building pad:
 - Fat clays at 4' to 8';
 - Calcareous clays below 12';
 - Gray limestone at 15' to 20'
- Fat clays:
 - $_{\circ}$ PI = 35% to 47%
 - Swell potential from 0.0% to 1.0%
 - Potential Vertical Rise (PVR) = 2" to 3"

Preliminary Geotechnical Concerns

- Insufficient number of pre-construction borings performed
- No moisture content specification for compaction
- Miscalculated (underestimated) PVR

DESIGN REVIEW/ANALYSIS

Structural Engineering

Pre-Construction Geotech Report

PIER DESIGN PARAMETERS

(FROM PRE-CON GEOTECH REPORT)

- 40,000 psf end bearing pressure
- 6,000 psf skin friction for portion embedded into limestone below 2'
- Uplift pressure 2,200 psf to a depth of 12'
- Uplift force to be resisted by dead load plus skin friction

Structural Design

PIER DESIGN PARAMETER

6,000 psf skin friction for portion embedded into limestone below 2'

STRUCTURAL DESIGN REQUIREMENT

All piers to be embedded into limestone ONLY 2'

AS_CONSTRUCTED (FYI)

Piers embedded into limestone to 2.2' maximum (from pier logs)

Structural Design Analysis

2' diameter pier = 6.3 s.f. surface area/ft depth

12' active clays @ 2,200psf = 166,300 lb uplift /

0' embedment into limestone =

psf allowable skin friction resistance to uplift

DL (building + pier + grade beam) ≈ 39,000 lb / pier

166,300 – 39,000 = **127,300** lb NET UPLIFT / pier

CONSTRUCTION REVIEW/ANALYSIS

Subgrade

DESIGN REQUIREMENTS

Undercut pad 4', moisture condition and replace 3', cap with 1' of select fill or lime-stabilized native soil

AS-BUILT CONDITIONS

- No select fill used; lime stabilization inconsistent
- Moisture conditioning poorly performed

Foundation

1' turn-down slab utilized instead of 36" grade beam at one elevation

Grading & Drainage

- Grade sloped toward building
- Ineffective rain guttering system along the perimeter

CONCLUSIONS

Foundation Movement caused by:

- Inadequate pre-construction geotechnical investigation
- Incorrect geotechnical calculations
- Improper structural design based on the (inadequate) geotechnical report
 - □Piers not embedded deep enough into rock to resist uplift
 - ☐ Grade beam not sufficiently deep to resist uplift
- □ Failure to place select fill
- □ Failure to moisture condition soils
- □ Neutral and negative grading around perimeter of structure
- □ Inadequate guttering system

RECOMMENDATIONS

- Additional soil testing of the subgrade
- Move tenants out of building, remove interior finishes and partitions
- Excavate and demolish slab and grade beams
- Undercut and moisture condition the subgrade
- Place 1' layer of compacted select fill
- Remedial piers installed at all existing deficient piers
- Perimeter grade beams and slab formed, reinforced, and re-poured

COST

Original Construction: ≈ \$5 Million

Remediation: ≈ \$5 Million