

Building on Expansive or Hydro Collapsible Soils? Hillsides or Areas with High Water Tables?

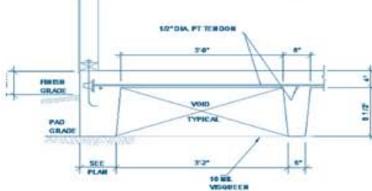
PHS has three foundation systems that will provide significant savings in materials, building cycle time, and future warranty costs.

A raised post-tension slab foundation system especially for use in areas of critical and highly-critical expansive and hydro collapsible soils. Components include the **Winslow Geo Anchor** and **Lateral Resistance Device** products together with a 5" slab monolithically poured over a void form...

LEARN MORE 🕨

Built by a local timber provider, this system offers builders developing on areas of critical and highly-critical expansive soils, hillsides and areas with high water tables, a cost effective solution. Crawl spaces provide venting, eliminating mold. The **Raised Wood Floor System** has been successfully utilized by PHS for the past 13 years...

LEARN MORE 🕨


Waffle M!I

The **Wafflemat[™]** is the most innovative (and, with over 6.5 million sq. ft. of residential living space poured since 1995, the most proven) foundation forming system for low, moderate and highly-expansive soil conditions. It possess the greatest floor stiffness of any system in its class, with sufficient strength to resist differential swelling...

LEARN MORE ≽

PACIFIC THE COMPANY PRODUCTS S Y S T E M S, INC THE COMPANY PRODUCTS start SMART Wafflemat Raised Floor start SMART System System

build SMART

stay SMART

"The Wafflemat System is easily implemented in both rebar and post tension applications. It presents the best of both worlds to developers faced with the need to deliver maximum productivity with the highest possible reliability at the lowest cost."

NEWS >

Lateral Resist.

Device

Winslow Geo

1	Note Note	_	1	11-
		THE	111	
(mark)	H		1-1-1	
200	200			
Sector Sector Sector		hain'	4464	
100000	n occ	1151		1.000
I DODOO	n nnn		100	1
	H H H H			and the second
			a 1 - 0	-0-1
	H Hode	HHX	100	-0-11
The second				
	DOCT	1		
	n n n		K I I	
had a start of the start		- E		-
41 L				

Matt Gonsalves | CHAIRMAN

Conco Companies

CONTACT US >

art Floo

Smart Core

WHERE SYSTEM FITS

Low, Moderate, and Highly-Critical Expansive and or Rocky Soil

BACKGROUND

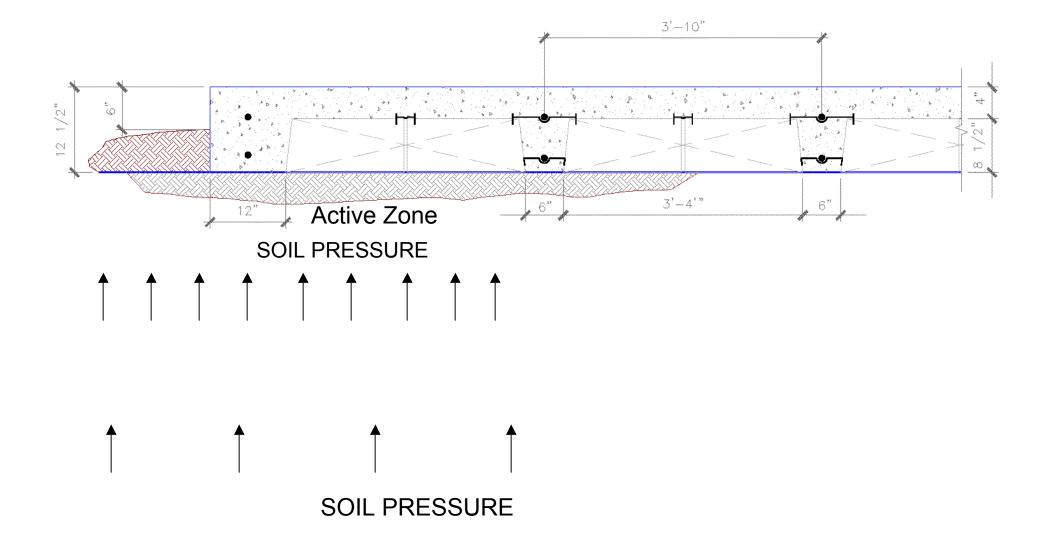
The Wafflemat is the most innovative – and, with over 6.5 million sq. ft. of residential living space poured since 1995 without one structural callback, the most proven – foundation forming system for low, moderate and highly-critical expansive soil conditions. It posses the greatest floor stiffness of any system, and is easily the most economical system in its class, with sufficient strength to resist differential swelling resulting from landscaping practices, surface drainage or flooding from any source. The Wafflemat does not require presoaking underlying soil pads, and there is no need for footings – meaning no earth spoils. And, since the Wafflemat slab is typically 12" above grade, it requires no gravel, sand or moisture barrier.

The Wafflemat comes in either 8½° or 12° high, 19 x 19° thermal-grade heat resistant waffle boxes. It holds a 5° – 6° monolithically-poured post tension or rebar re-enforced concrete slab (again, no footings are required). The Wafflemat sits on the ground like a raft, the waffle boxes allowing for expansive soil movement.

The Wafflemat is created by connecting the boxes, and evenly spacing them throughout the footprint area. The monolithic pour creates concrete beams running through the footprint and perimeter. The system can be installed easily by a local concrete provider, and offers extensive set-up time savings (typical installation: one day). In addition, the plumbing is brought up through the waffle boxes, and can be re-enforced with rebar.

The system reduces building cycle time, and provides an overall cost savings while greatly mitigating future warranty and litigation issues.

1,200 Homes -Successfully Built on Wafflemat System


Richland Development has constructed 1200 homes over the last ten years in Northern California with the presence of expansive soil conditions. "We piloted the **Wafflemat System** back in August 1995 and have used it exclusively on our homes since late 1995. We believe the performance has exceeded our expectations, and wholeheartedly recommend the use of the **Wafflemat System** for any area with expansive soils," said **Steven Johnson, president Richland Development Corporation.**

6.5 Million Sq. Ft. Living Space - Successfully Poured on Wafflemat System

The **Wafflemat System** is one of the most innovative and proven foundation forming systems for residential construction in expansive soils. It possesses the greatest stiffness of any system, and has been proven over the past ten years without one structural callback. "We have implemented the system in both rebar and post tension applications, and now have over 6.5 million square feet of **Wafflemat** slabs poured in numerous cities and counties in California for residential production homebuilders like Shea Homes, Delco Builders and Mission Peak Company," stated, **Matt Gonsalves, Chairman and founder, the CONCO Companies.**

Wafflemat View

Rich Treanor | Director of Planning + Production Pacific Housing Systems rich@pacifichousingsystems.com

MATERIAL + PROPERTIES

What type of material is used to make the WAFFLEBOX?

WAFFLEBOXES are made from 100% recycled reprocessed polypropylene (plastic), a "Green" product.

Why are the WAFFLEBOXES constructed of Polypropylene?

Polypropylene is a light weight and strong material, and it maintains its strength over a wide temperature range. The WAFFLEBOXES are strong enough to support the weight of the concrete workers during installation and the pouring process.

The Polypropylene material used is tough and impact resistant, ensuring that the WAFFLEBOXES will hold up well in the construction environment. It is a highly stable and chemically nonreactive resin that, when covered with concrete, will last decades before any degradation. It is impervious to water and water vapor, providing an effective moisture barrier.

Has the polypropylene gone through chlorine testing?

Polypropylene is inherently inert to chlorine and chlorides.

INDUSTRY CERTIFICATIONS -

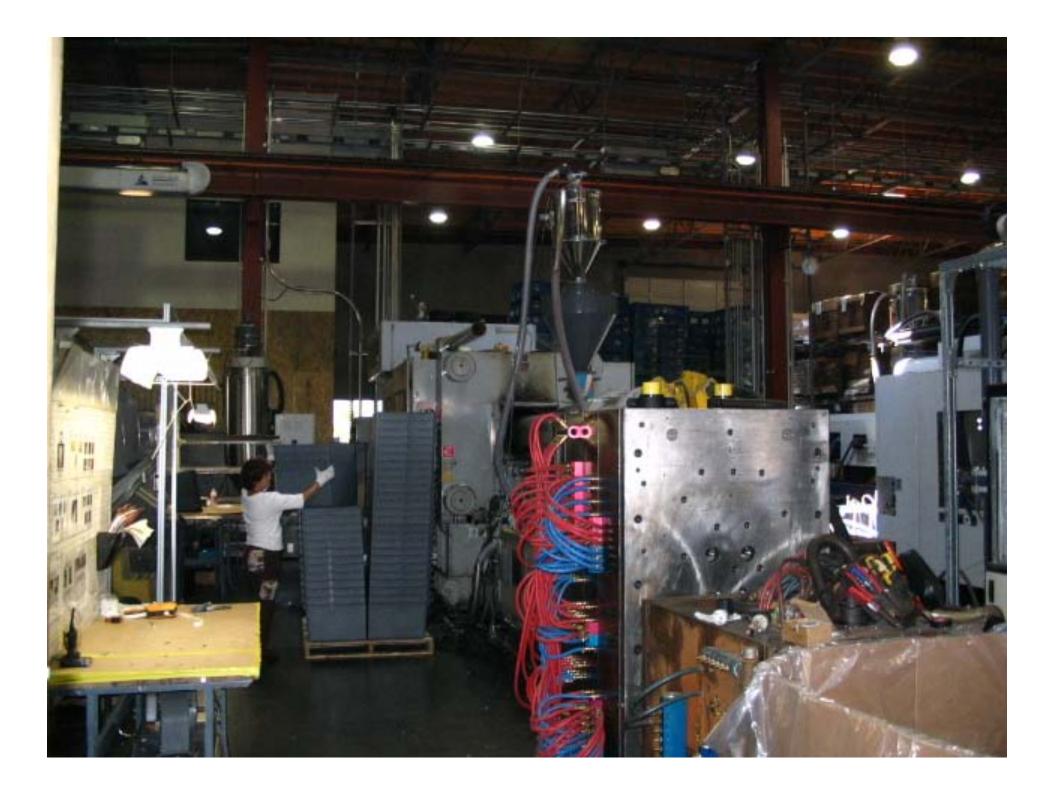
Why doesn't the plastic or the WAFFLEBOX have a UL listing?

UL listing in this case would refer to the fire resistance of the product. Again, since the WAFFLEMAT is a concrete form system and buried under several inches of concrete slab, the application does not warrant a UL listing.

Is there an NSF report for the plastic or the WAFFLEBOXES?

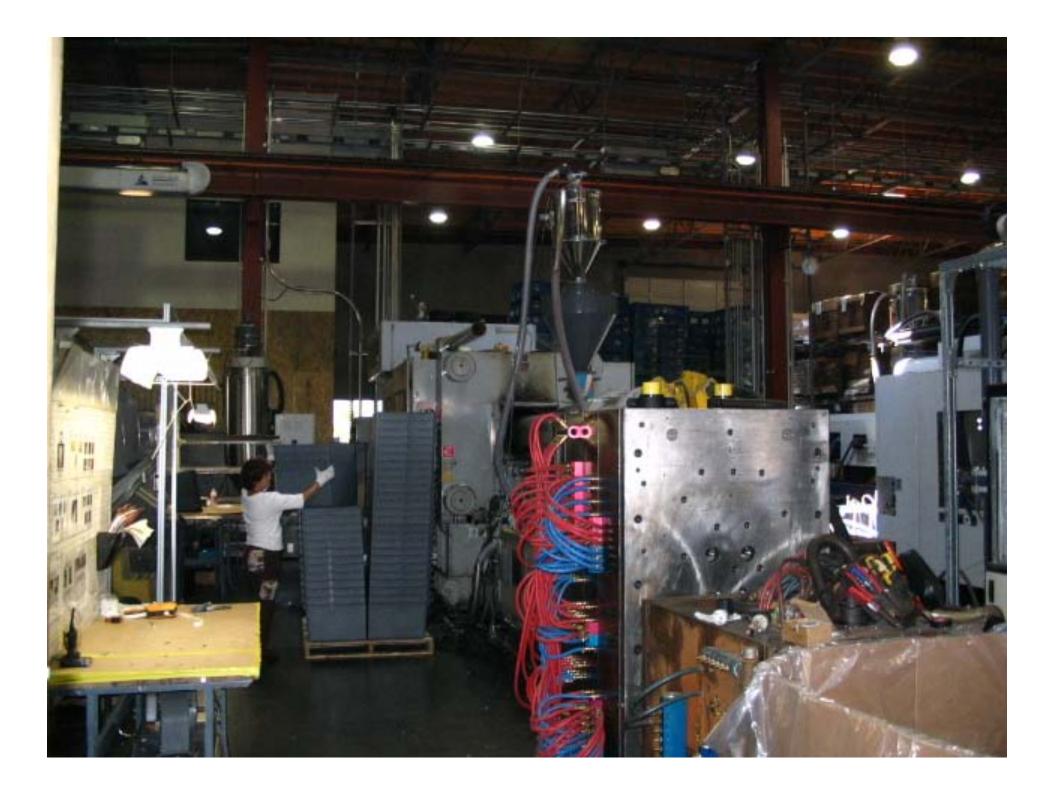
Since National Sanitation Foundation testing and certification is applicable to products that come in contact with potable water or food, a NSF would have no relevance to the WAFFLEBOXES.

STORAGE AND WAREHOUSING -


What are the dimensions of a WAFFLEBOX?

19.25" x 19.25" by 8.5" high. The wall thickness of the boxes is .070"

What pertinent information can you give regarding storing/warehousing the WAFFLEBOXES?


Boxes per Pallet	104	
Dimensions of Loaded Pallet	42"x42" pallet, about 80" high	
Weight:		
Pallet [only]:	46 lbs.	
Boxes [only]:	327 lbs.	
Total:	373 lbs.	

3'

[WHITE PAPER]

Lowering the Carbon Footprint When Using the Wafflemat[™] System for Concrete Slab Foundations

A Climate Change Gas Emissions Analysis on the Production, Transportation, and Use of Concrete in Slab Foundations

Sam L. Altshuler | State of California P.E., M.E., + Board Certified Environmental Engineer

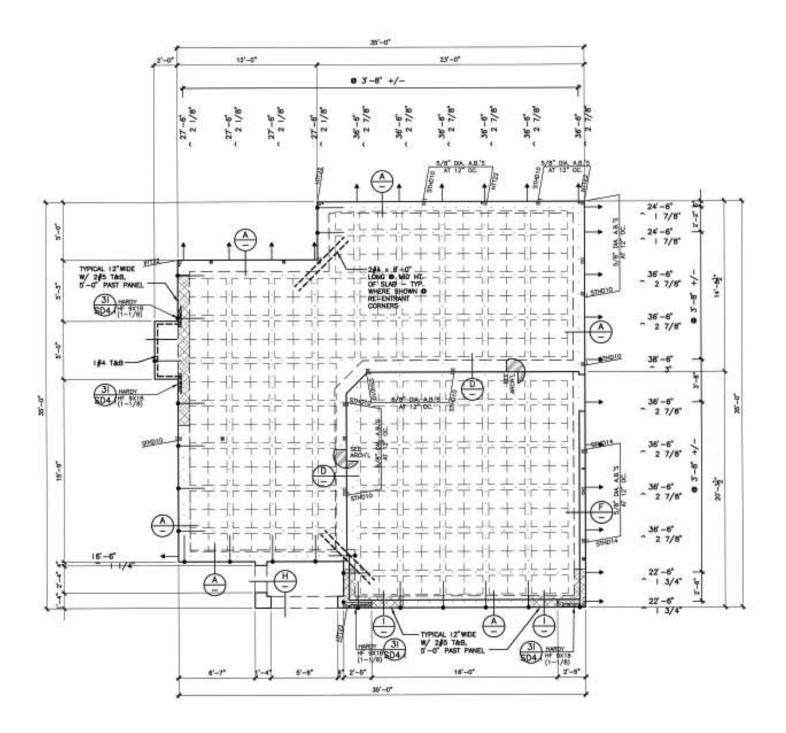
February 2007

Use of the WAFFLEMAT System in residential home construction can reduce the level of climate change emissions by 20% [the equivalent of 4 to 9 tons less CO_2 released into the atmosphere per home] when compared to the use of conventional slab foundations. Other emissions reductions are also projected.

EXECUTIVE SUMMARY -

Carbon dioxide (CO₂) is the main anthropogenic gas contributing to the buildup of greenhouse gases in the earth's atmosphere. Emissions of CO₂ from a specific project are collectively referred to as the "carbon footprint." CO₂ emissions result from use of fossil-derived energy during the production and transport of materials.

WAFFLEMAT[™]SLABS PROVIDE SUPERIOR PERFORMANCE


John Cook | S.E. Principal, MKM & Associates Structural Engineering

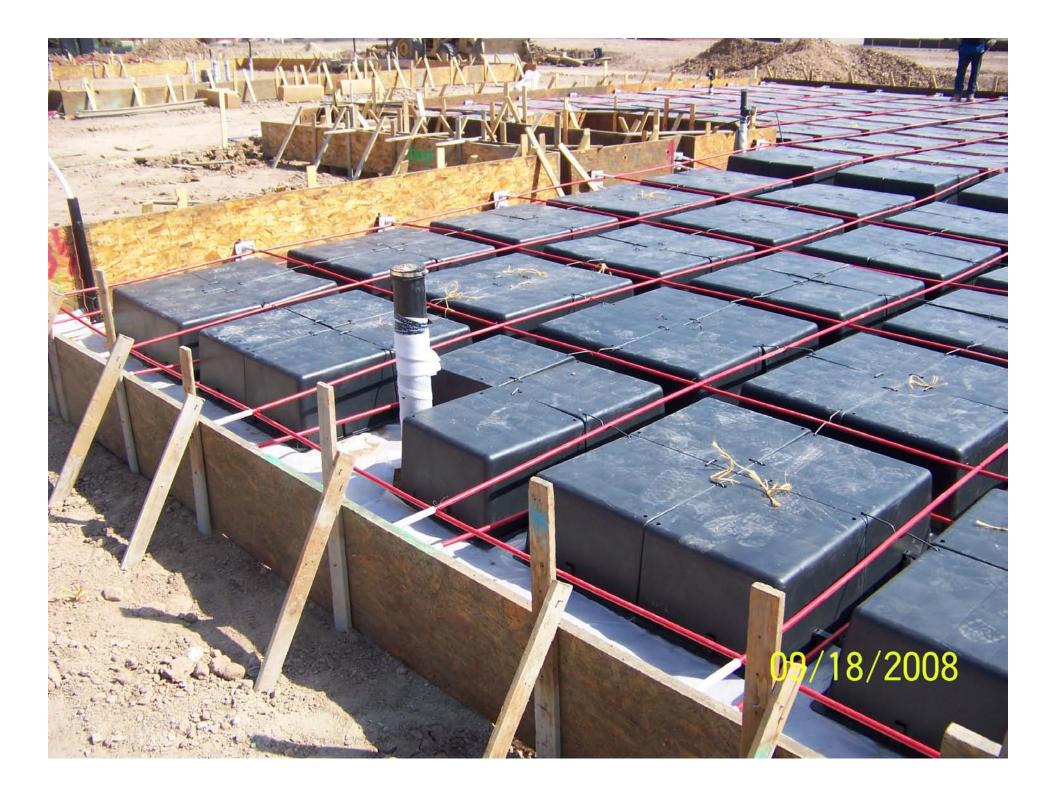
April 2008

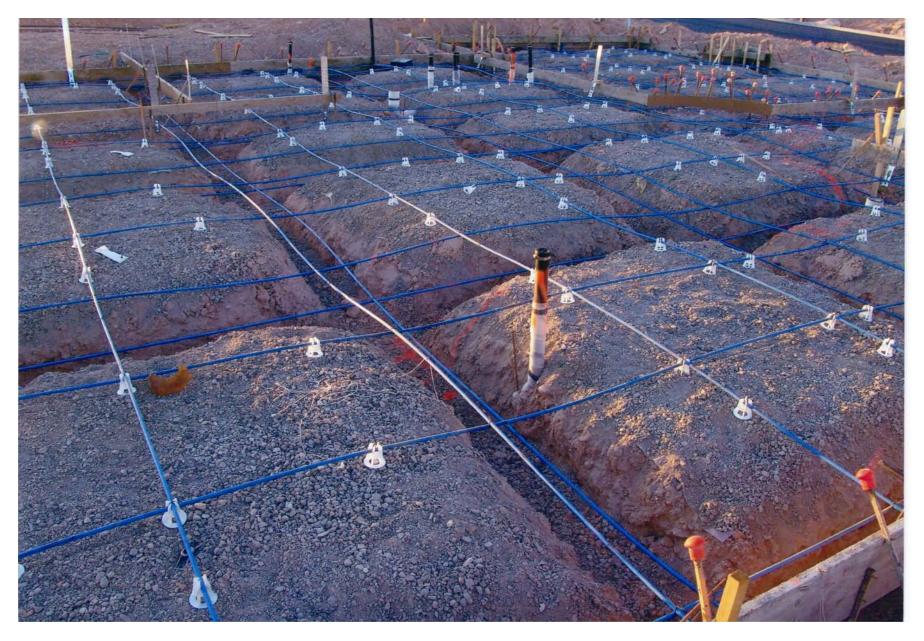
EXECUTIVE SUMMARY -

This paper provides a discussion and summary of the performance of Wafflemat[™] (US Patent 5,540,524) slabs on grade. The discussion contained herein is based upon studies performed by the geotechnical firm of Purcell Rhoades & Associates (ref. 1), as well as observations of the performance of installed Wafflemat foundations (Appendices A-D) over a 15-year period.

Post-tensioned, slab-on-grade construction and mild reinforced mats have been used for decades to provide adequate support for residential and light commercial construction. The original, post-tensioned slabs were constructed by trenching to form in-ground beams (or "ribs") to provide stiffness when combined with a relatively thin slab. Subsequently, uniform thickness post-tensioned slabs (or, "UTF's" for "Uniform Thickness Foundation") were utilized with or without perimeter in-ground beams. The uniform thickness slabs are much thicker than slabs of the in-ground beam system, and have gained some prominence in certain parts of the world.

Multi-Family

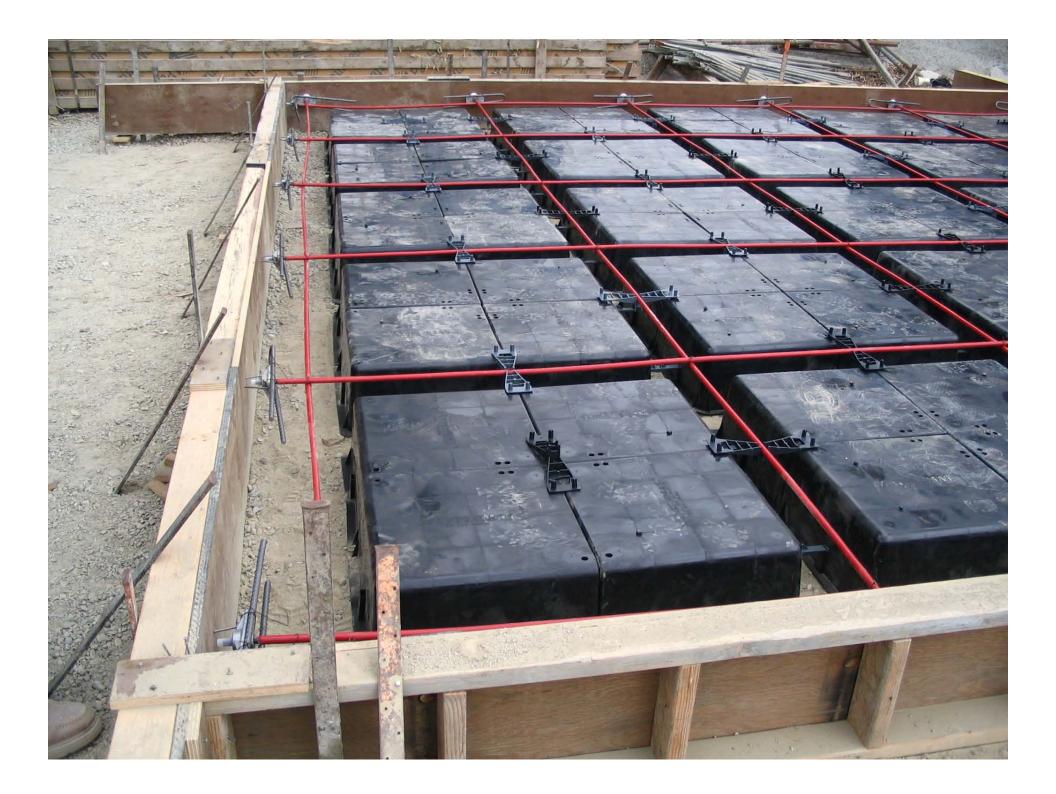




Typical Ribbed Foundation Layout

Design Calculations - Ribbed Slab

Minimum 6" beam width – PTI Standard 3rd Edition Minimum 6' beam spacing – PTI Standard 3rd Edition Strand spacing is set – 3 feet 8 inches Can double either slab or beam tendons Can vary height of slab tendons


Can add tendons over top of boxes

Vary slab depth

Vary beam depth 12 1/2 or 16"

4.3 – Ribbed Foundations – Calculations for ribbed foundations shall be based upon criteria specified in **4.3.1** through **4.3.5**. Geometry resulting in larger gross section properties may be used for actual construction.

4.3.1 – Minimum Slab Thickness – Minimum slab thickness *t* shall be 4 in.

4.3.2 - Ribs

4.3.2.1 - Minimum Size

(a) **Depth** – Minimum rib depth h shall be the larger of (t +7) in. or 11 in. When more than one rib depth is used in actual construction, ratio between the deepest and the shallowest rib depths shall not exceed 1.2.

(b) Width – Rib width *b* used in section property calculations shall be the actual rib width, subject to a minimum of 6 in. and a maximum of 14 in. Rib widths may vary within the specified ranges.

4.3.2.2 – Spacing - *S* used in moment and shear equations shall be the average rib spacing if the ratio between the largest and the smallest spacing does not exceed 1.5. If the ratio between the largest and the smallest spacing exceeds 1.5, *S* used in moment and shear equations shall be 0.85 times the largest spacing. *S*

Standard Requirements for Design of Shallow Post-Tensioned Concrete Foundations on Expansive Soils

May 2008

8601 N. Black Canyon Highway Suite 103 Phoenix, Arizona 85021

 Telephone:
 (602) 870-7540

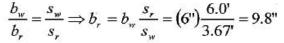
 Fax:
 (602) 870-7541

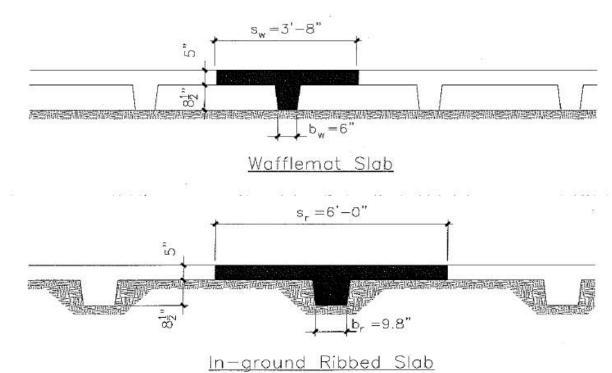
 Website:
 www.post-tensioning.org

used in the moment and shear equations shall not be less than 6 ft or greater than 15 ft. The rib spacing used in the section properties shall be the actual rib spacing but not greater than 15 ft.

\$-137

52
1
of 2
•


Verify that a ribbed foundation slab constructed using Wafflemat forms is stiffer than an in-ground ribbed foundation slab that strictly conforms to PTI 3.1 recommendations by comparing average Moment of Inertia values for each slab:

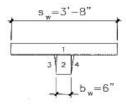

1) Ribbed slab created with Wafflemat forms

5" slab, 3'-8" on center rib spacing, 8.5" deep ribs with tapered sides and 6" bottoms

2) In-ground Ribbed slab

5" slab, 6'-0" on center rib spacing, 8.5" deep ribs with tapered sides and 9.8" bottoms Note: the 9.8" width was selected from the following ratio, to provide equivalent rib width between the two systems:

Job 000050 Wafflemat Foundations Moment of Inertia Comparison (Wafflemat vs. In-ground Ribbed Slab)


222		060	052				
Date	5	2/16/11					
PE	ELH	2	of	2			

Wafflemat

5" slab, 3'-8" on center rib spacing, 8.5" deep ribs with tapered sides, 6" bottoms

Section	b _x	h _x	A	у	Ay	Ay ²	I _o	Geometric Shape
1	44.0	5.0	220.2	2.5	551	1376	459	slab (rectangle)
2	6.0	8.5	51	9.25	472	4364	307	rib (rectangle)
3	1.0	8.5	4.25	7.8	33	261	17	sloped rib wall (triangle)
4	1.0	8.5	4.25	7.8	33	261	17	sloped rib wall (triangle)
Σ=		30.5	279.7		1088.8	6261.5	799.9	10 11 10 10 10

$y_t = \sum A_y / \sum A =$	3.89	in
$y_b = \sum h - y_1 =$	26.61	in
$(\Sigma A)(y_t^2) =$	4239	in ³
$I_{walflemat} = (\Sigma Ay^2 + \Sigma I_o) - (\Sigma A)(y_t^2) =$	2823	in ⁴
l _{w-avg} = l _w /s _w =	769	in⁴/ft

Wafflemat Repetitive Unit

In-ground Ribbed

5" slab, 6'-0" on center rib spacing, 8.5" deep ribs with tapered sides, 9.8" bottoms

Section	b _x	h _x	A	У	Ay	Ay ²	I,	Geometric Shape
1	72.0	5.0	360	2.5	900	2250	750	slab (rectangle)
2	9.8	8.5	83.4	9.25	771	7134	502	rib (rectangle)
Σ=	12523	13.5	443.4		1671.3	9384.1	1252.0	

$y_t = \sum A_y / \sum A =$	3.77	in	s ₇ =6'-0"
y _b = ∑h-y _t =	9.73	in	
(∑A)(yt²) =	6300	in ³	2
$I_{nbbed} = (\Sigma Ay^2 + \Sigma I_0) - (\Sigma A)(y_1^2) =$	4337	in⁴	b _w =9.8"
I _{r-avg} = I _r /s _r =	723	in⁴/ft	In-ground Ribbed Slab Repetitive Unit

Therefore,

 $I_{wafflemat-avg} = 769 \text{ in}^4/\text{ft} > I_{ribbed-avg} = 723 \text{ in}^4/\text{ft}$

Design: 1,800 sf rectangle 12 inch boxes 12 X 16 inch exterior beams 4" slab

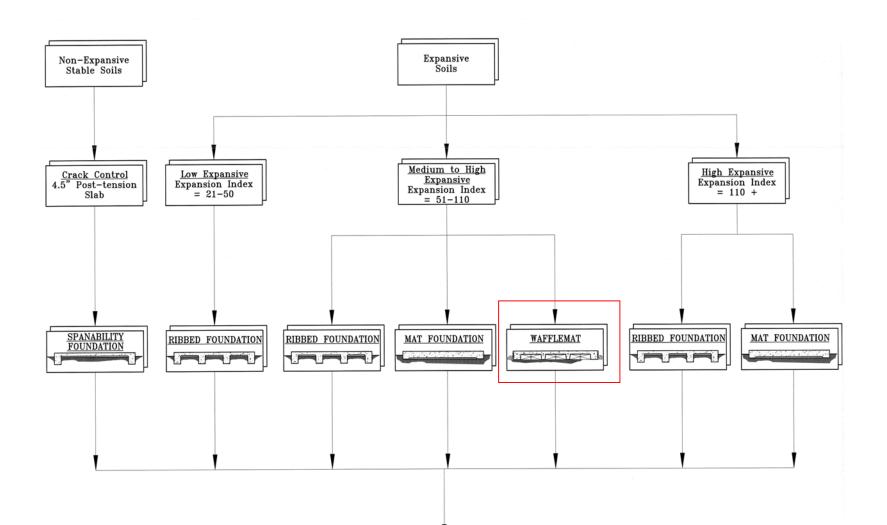
🛍 PTISIab 3.2 - PTISIabCalcs.pti File Data Screen Analysis Help A 🖬 🗛 E · 🗳 🔒 🎒 Output Summary Ribbed Foundation Center Lift Analysis Edge Lift Analysis Soil Bearing / Prestress Summary Selected Variables Design Summary **Design Compliance** PTI Exceptions MATERIAL PROPERTIES MATERIAL QUANTITIES: Concrete Strength, f'c: 3,000 PSI Concrete: 44.4 Cubic Yards Tendon Strength, Fpu: 270 KSI Prestressing Tendon: 1.329.0 Linear Feet Number of End Anchorages: 60 **BEAM SUMMARY Short Direction** Long Direction Type I Type II Type I Type II Number of Beams: 2 10 2 10 12.0 12.0 7.0 Beam Width, In: 7.0 Beam Depth, In: 16.0 16.0 16.0 16.0 Tendons per Beam : 2 0 2 0 3.00 Beam Tendon Cover. In : 3.00 3.00 3.00 Beam Spacing (Used for Analysis), ft : 6.00 6.00 SLAB SUMMARY 42.30 FT x 42.30 FT x 4.00 Inches thick Slab Dimensions: Short Direction: 11 Tendons at 3.83 Feet O.C. Long Direction: 11 Tendons at 3.83 Feet O.C. Slab Tendon Cover: 1.75 Inches

Soils: 1.7 inch edge lift 2.7 inch center lift

Design: 1,800 sf rectangle

12 inch boxes

Soils: 2.0 inch edge lift


12 X 19 inch exterior beams

20% max beam depth variance

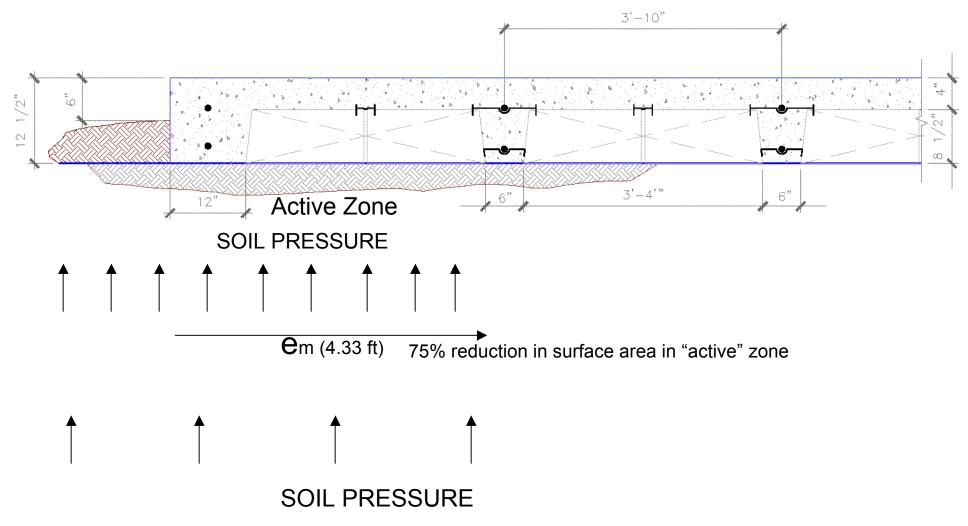
4" slab

ata Screen Analysis Help						
	4 🖬 🗗					
ıt						
ary Ribbed Foundation						
	E 1 1 10 A	1	C 10 1 10 1		1	6 L L 19 - LL
Center Lift Analysis	Edge Lift An		Soil Bearing / Prestres	s Summary	-	Selected Variables
Design Summary	1	De	sign Compliance	100	PII	Exceptions
ATERIAL PROPERTIES		M	ATERIAL QUANTITIES:			
Concrete Strength, f'c:	3,000 PSI		Concrete:	46.1 Cu	ubic Yards	
Tendon Strength, Fpu:	270 KSI) KSI Prestressing Tendon:		1,329.0 Linear Feet		
			Number of End Anchorages:		60	
BEAM SUMMARY	Short Di	Short Direction Long Direc				
	Type I	Type II	Type I	Type II		
Number of Beams:	2	10	2	10		
Beam Width, In:	12.0	7.0	12.0	7.0		
Beam Depth, In:	19.0	16.0	19.0	16.0		
Tendons per Beam :	2	0	2	0		
Beam Tendon Cover, In :	3.00	3.00	3.00	3.00		
Beam Spacing (Used for Analy	vsis), ft :	.00	6.0	10		
SLAB SUMMARY						
Slab Dimensions:	42.30 FT :	x 42.30 FT x 4.1	00 Inches thick			
Short Direction:		11 Tendons at	3.83 Feet O.C.			
Long Direction:		11 Tendons at	3.83 Feet O.C.			
Slab Tendon Cover:			1.75 Inches			

Product Decision Tree

PTI Calculation Limitations

Beam Spacing: 6 ft minimum

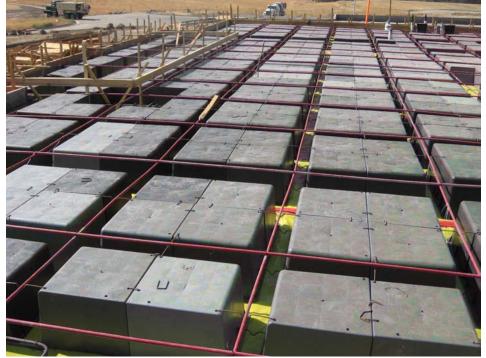

Beam Depth Limitation: 20% maximum variation

No reduction in swell pressure as a result of void boxes

ANY TRANSLATION TO REDUCTION IN Ym ?

ANY REDUCTION IN SOIL PRESSURE ON BOTTOM OF SLAB IN "ACTIVE AREA" ?

ANY REDUCTION OF UPLIFT IN EDGE LIFT (SWELL) CONDITION ?



Construction Improvements

Better Control of Tendon Placement No Tendon Chairs Improved Reinforcing Placement Fewer Layout Mistakes Ease of Inspection

Minimal Variance in Concrete Usage Perfectly Shaped Beams

Better Control of Drainage - Backfill After Pour

Advantages of Wafflemat Above-Ground Forming System

Minimal Trenching Minimal Beam Cleanout No Beam Water Pumping

Minimal Concrete Variance Reduced Concrete Usage

Reduced Building Cycle Time

Reduced Weather Delays

Improved Vapor Barrier

Improved Control of Reinforcing & Placing No Tendon Chairs No Tendons to Walk On Better Control of Tendon Placing

Potential Reduction of Lift / Less Surface Area on Soil

Building Cycle Time Components

Site Preparation: Reduced Cut & Fill

Beam Trenching

Minimum Spoils & Removal

Sand & Gravel

Trenching Cleanout

Pre-Soaking

Weather Delays

Potential Cost Savings of Wafflemat

	RANGE		
Trenching Beam Cleanout	\$.30 / sf	\$.40 / sf	
Concrete Variance – 15%	\$.40 / sf	\$.50 / sf	
Site Work & Pad Preparation Rough Grading Sand & Gravel	\$.20 / sf	\$.30 / sf	
Building Cycle Time – 2 days	\$.25 / sf	\$.35 / sf	
Weather Delays	\$.15 / sf	\$.25 / sf	
Reinforcing / Installation	\$.05 / sf	\$.05 / sf	
Totals	\$1.35 / sf	\$1.85 / sf	

Wafflemat Cost Components:

Box Cost Sales Tax Transport Storage, Handling, Delivery Royalties Installation

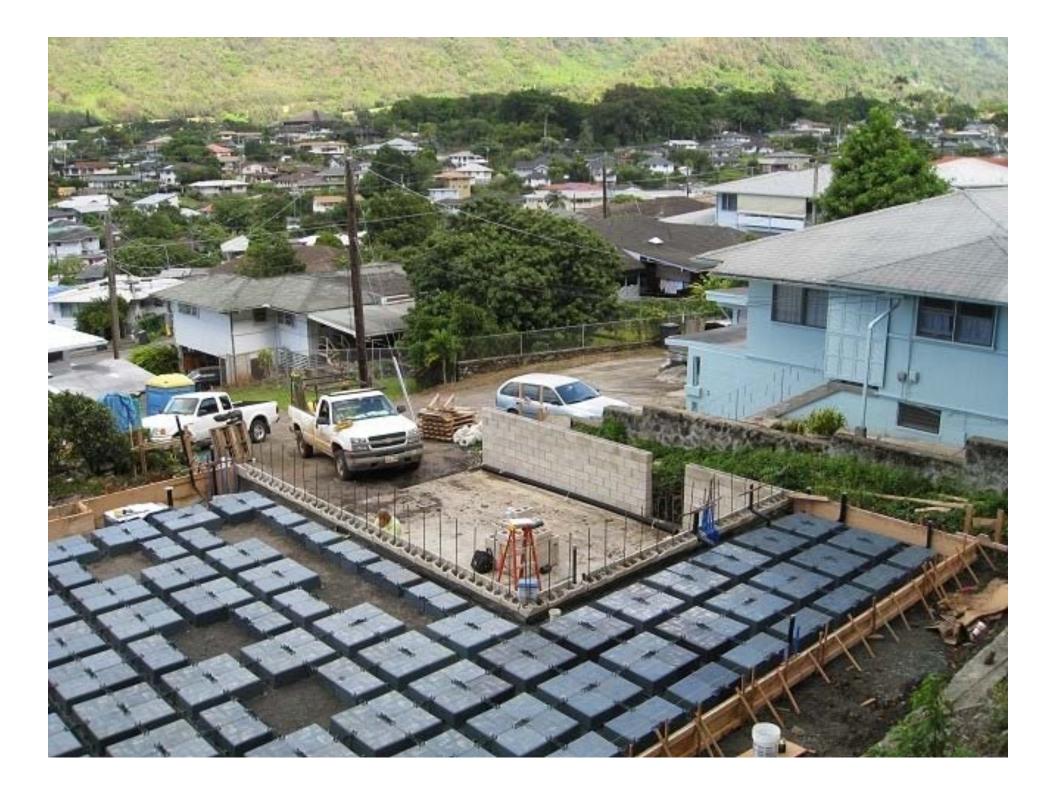
Cost of Wafflemat Box = \$7.25 ea. Installed

4.25 Square Ft per Box

Cost of Wafflemat = \$1.70 per square ft

"Green" Advantages:

Less concrete waste Means less emissions Means lower carbon footprint Component made from recycled material



THE END

ata Screen Analysis Help							
2	A 🖬	à					
		-					
ut							
ary Ribbed Foundation							
Design Summary	Ē		Design Co	mpliance	1	PTI	Exceptions
Center Lift Analysis	Edge Lif	Analysis		Soil Bearing / Pre	stress Summary	1	Selected Variables
			4	citiza			
IOMENT ANALYSIS - EDGE							
Maximum Moment, Short [Direction :	4.54	FT-K/FT				
Maximum Moment, Long E	Direction :	4.54	FT-K/FT				
Bending Stresses (KSI) Tension in Bottom Fiber				Compression i	n Top Fiber		
	<u>Short</u>	Long			Short	Long	
Allowable Stress :	-0.329	-0.329	Allo	wable Stress :	1.350	1.350	
Actual Stress :	-0.303	-0.303	Acti	ual Stress :	0.284	0.284	
TIFFNESS ANALYSIS	Based on S	Stiffness Cri	iteria of: 960				
	Short Dire	ection	Long Dir	ection			
Required Moment of Inertia :	62,383 I	nches^4	62,383	Inches ⁴			
Available Moment of Inertia :	62,652 I	nches^4	62,652	Inches ⁴			
HEAR STRESS ANALYSIS							
	Short Dire	ection	Long Di	ection			
Allowable Shear Stress :	153 F	PSI	153	PSI			
Actual Shear Stress :	78 F	PSI	78	PSI			
QUIVALENT CRACKED SEC	and the second se	- 200 - 200					
Gottineenti onitioneo deo	Short Dire	ection	<u>Long Di</u>	ection			
GOTTILETT ON IONED DEC				122220 CO			
Cracked Moment Capacity :	112.8 F	FT-K	112.8	FT-K			

ata Screen Analysis Help					
🖻 🖬 🍯	A 🖬 🗛				
ut					
ary Ribbed Foundation					
Design Summary	1	Design Compliance	1	PTI Exc	eptions
Center Lift Analysis	Edge Lift Analysis	Soil Bearing / Pre	stress Summary	S	elected Variables
OMENT ANALYSIS - CENTE	B LIFT MODE				
Maximum Moment, Short D		FT-K/FT			
Maximum Moment, Long D		FT-K/FT			
and the second			Compression in	D - W	
Bending Stresses (KSI)	Short Long		Short	Long	
Allowable Stress :	-0.329 -0.329	Allowable Stress :	1.350	1.350	
Actual Stress :	-0.211 -0.211	Actual Stress :	0.832	0.832	
TIFFNESS ANALYSIS	Based on Stiffness Cri	teria of: 480			
	Short Direction	Long Direction			
Required Moment of Inertia :	55,216 Inches^4	55,216 Inches^4			
Available Moment of Inertia :	62,652 Inches^4	62,652 Inches^4			
HEAR STRESS ANALYSIS					
	Short Direction	Long Direction			
Allowable Shear Stress :	153 PSI	153 PSI			
Actual Shear Stress :	50 PSI	39 PSI			
QUIVALENT CRACKED SEC	A CONTRACTOR OF A CONTRACTOR OF A CONTRACT OF				
	Short Direction 326.7 FT-K	Long Direction			
Cracked Moment Capacity :		326.7 FT-K			

Soil Properties

11 PTISIab 3.2 - PTISIabCalcs.pti*	
File Data Screen Analysis Help	
Ê ▼ 🕞 🛃 🎒 Å 🗏 ြ≽	
Input Project Information Material Properties Slab Properties Beam Properties Soil Properties Load, Stiffness & Soil Label : Typical Slab Dimensions - Soil Properties Change Soil Type : Expansive Soils • Expansive Soils - Based on PTI's 3rd Edition Manual or Technical Note #12 Allowable Bearing Pressure. (PSF) : 1000 • Edge Moisture Variation Distance, em, (FT) : 9 • Differential Soil Movement, ym, (in) : 2.7 •	Prestress Line Load Analysis More Information Soil Properties Tab The Soil Properties Tab contains variables used to define the soil beneath the foundation. Using the "Save" and "Open" toolbar buttons on the Input window the data on the Soil Properties Tab can be saved fo future use. Right click on textbox, checkbox or option button labels for more information about the variables.