Advanced, Modern, and Innovative Technologies Used at Houston Airport Systems

Houston Airport System Pavement Seminar, Houston Texas (Sept. 14, 2011)

Adil Godiwalla, P.E.

ADVANCED, MODERN AND INNOVATIVE TECHNOLOGIES USED AT HOUSTON AIRPORT SYSTEMS

Adil Godiwalla, P.E.¹ (MS Civil Engineering) Assistant Director, Design Division City of Houston Government, Department of Aviation Dev Raj Pokhrel² (MS Environmental Management/ MS Civil Engineering) Graduate Engineer, Design Division, Houston Airport Systems

ABSTRACT

Soils in the Houston Area have high plasticity and are considered less desirable when dealing with pavement and foundations because of their swelling and expansive nature. However, with the application of innovative technologies, methods, and materials adopted at Houston Airport Systems (HAS), such problems have successfully been addressed and overcome. Various studies on soils stabilization techniques at HAS have indicated that these techniques are effective in reducing plasticity index, improving compaction characteristics, and increasing compressive strength as well as resilient modulus, which are the key parameters in controlling airfield pavement design. Various advanced modern, and innovative technologies that have been adopted at Houston Airport Systems (HAS) include:

Applications of New Concrete Technology:

•Novophalt Asphalt (Polymer Modified Asphalt) concrete technology.

•Stress Absorbing Membrane Interlayer (SAMI).

•Cement, Fly-ash & Blast Furnace Slag Concrete.

Various Soils Stabilization Techniques for Base, Sub-base and Sub-grade:

•Soil stabilization using Lime/Fly ash in slurry form.

•Soil stabilization using Cement/ Fly ash in slurry form.

•Soil stabilization using a Blend of Fly ash and Bottom ash.

•Lime/Cement/Fly ash/Crushed Concrete stabilized Base

•Cement /Fly ash Crushed Concrete Base.

These project applications have made the Houston Airport Systems one of the leaders in innovative technologies among airports in the United States. The objective of this paper is to introduce some of the innovative pavement technologies used in pavement design at the Houston Airport Systems. This paper will presents some of the innovative approaches regarding application of new concrete technology for pavement surfaces, various soil stabilization techniques for base, sub-base and sub-grade that have using for last twenty-five years in all the three airports at Houston Airport Systems. The outcomes of recent studies on Lime Fly Ash Stabilization in terms of compaction characteristics, strength development, changes on Plasticity Index, and relationship between compressive strength of stabilized soils to the PI of Virgin Soils are also presented. Finally, the outcomes of Finite Elemental analysis for the possible cause of slab cracking and delamination of pavement at TW-WA/WB in conjunction with the operation of B-777 at different loading scenario, and the involvement of environmental factors are also discussed.

Key Words: Stabilization, Soil, Cement, Concrete, Compaction, Plasticity, Pavement

Advanced, Innovative and Leading Edge Pavement Concrete Technologies at Houston Airport Systems:

- Novophalt Asphalt (Polymer Modified Asphalt) Concrete Technology
- Stress Absorbing Membrane Interlayer(SAMI) for reflective cracking of pavements.
- New concrete -Cement, Fly ash and Blast furnace slag.

Soils stabilization Techniques for Base, sub-base & Subgrade:

- Lime/Fly ash in the Slurry form.
- Cement / Fly ash in Slurry form.
- Blend of Fly ash and Bottom ash.
- Lime/Cement/Fly ash (LCF) Crushed Concrete Stabilized Base
- Cement/ Fly ash Crushed Concrete Base

These project applications in the real world have made the Houston Airport System one of the leading users of the leading edge of Technologies among Airports in the country.

Pavement Technology

(Innovative Sub-grade, Sub-base, and Surface Material)

New concrete Technology: Novophalt Asphalt (Polymer Modified Asphalt)

- Cement, Fly ash and Blast furnace slag
- SAMI: Stress Absorbing Membrane Interlayer (for reflective cracking of pavements)
- Stabilized Base and Sub-Base

NOVOPHALT HOT MIX ASPHALTIC CONCRETE (Polyethylene Additive)

Novophalt Asphalt improves the following properties of the Hot Mixed Asphaltic Concrete

- Better Viscosity
- Improvement in Temperature Susceptibility
- Higher Marshall Stability
- Higher Modulus of Elasticity
- Higher Tensile Strength

NOVOPHALT HOT MIX ASPHALTIC CONCRETE (Polyethylene Additive) Contd.

- Better Moisture Resistance
- Better Fatigue Resistance
- Better Resistance to Permanent Deformation
- Better dynamic Modulus, Creep Resistance, Resilient Modulus, Flexural Modulus
- Less Damage to Pavement
- Less Rutting
- Less Cracking

NOVOPHALT HOT MIX ASPHALTIC CONCRETE

Resilient Modulus and Thermal Stress VS Temperature

NOVOPHALT HOT MIX ASPHALTIC CONCRETE

Resilient Modulus VS Temperature Relationship

Chemical Composition	Percentages for Portland Cement	Percentages for Class "C" Fly Ash	Percentages for Ground Granulated Blast Furnace Slag, Grade 120 (GGBFS)
CaO	65	31	42
SiO ₂	20	35	38
AL ₂ O ₃	4	17	8
Fe ₂ O ₃	3	6	Trace
MgO	3	5	7
SO3	3	3.5	
S			1
Na ₂ O+K ₂ O	1	1.5	0.4
MnO			1

Table 1 - Chemical Composition of Cement and Slag

When GGBFS is coupled with cement, a synergistic combination is formed. Each product hydrates on its own, forming strength bearing calcium silicate hydrate (CSH). The excess silica from GGBFS and the excess calcium from cement react to form additional strength bearing CSH in the pore spaces of the concrete. This makes a stronger, denser matrix with decreased permeability. The chemical reactions are as follows:

Cement	+	H ₂ O	=	CSH	+	Ca(OH) ₂
GGBFS	+	H ₂ O	=	CSH	+	SiO ₂
SiO ₂	+	Ca(OH) ₂	+	H ₂ O	=	CSH

Chemical Reactions in Fly Ash Concrete between Cement and Fly Ash

CaO

-Cementitious Materials

MgO

Al₂O₃ SiO₂ -Pozzolanic Materials Fe₂O₃

CaO+MgO+H2O+AI2O3/SiO2/Fe2O3=Cementitious Paste+Ca(OH)2

Ca(OH)2+A12O3/SiO2/Fe2O3=Cementitious Paste

In concrete using only Portland cement, approximately 35% Ca(OH)₂ is formed, which lies dormant. By adding fly ash, the Ca(OH)₂ is utilized fully, because it reacts with the pozzolanic materials to form additional cementitious paste.

which are not susceptible to alkali silica reaction. Extensive quality assurance and testing requirements were introduced in the concrete pavement specifications to eliminate this hazard, which is becoming more prevalent nowadays.

The concrete mix design was as follows:

Cement, Type I Class "F" fly ash Blast furnace slag, Grade 120 Total cementitious materials Coarse aggregate (1:5" granite) Fine aggregate (siliceous sand) Water Water – cementitious materials ratio AEA WRA 270 lbs/C.Y. 135 lbs/C.Y. 135 lbs/C.Y. 540 lbs/C.Y. 1,193 lbs/C.Y. 1,193 lbs/C.Y. 209 lbs/C.Y. 0.39 4.5 ozs/cwt 22.0 ozs/cwt

Here are the results of the petrographic analysis scanning election microscopic and other tests performed by the Texas Transportation Institute (Dr. Sarkar).

Concrete 90 Day Summary

Runway 8R-26L Reconstruction Project 491B Plant: W.W. Webber #2 Mix #2600: 294 lbs Type I Cement, 135 lbs Flyash, & 135 lbs Slag per cu. Yard Mix #259: 423 lbs Type I Cement, 141 lbs Flyash, & 141 lbs Slag per cu. Yard Specified Strength: 650 psi at 28 days

	11 A.	Mix	1.	Air				Flex	ural Streng	th, psi	_			Increase	, 7-28 Day	Increase	, 28-90 Day
Lot #	Date	Number	Slump	Content	7 Day	7 Day	7 day Ave	28 Day	28 Day	28 day Ave	90 Day	90 Day	90 Day Ave	psi	%, 28 day	psi	%, 28 day
Lot 33-1	03/17/04	2600	2 1/2"	4.8%	480	520	500	760	780	770	715	705	710	270	35%	-60	-8%
Lot 33-3	03/17/04	2600	2"	5.0%	470	505	488	725	710	718	775	705	740	230	32%	22.5	3%
Lot 34-1	03/18/04	2600	1 1/2"	4.2%	555	530	543	700	760	730	765	830	798	187.5	26%	67.5	9%
Lot 34-3	03/18/04	2600	2"	4.5%	530	505	518	785	660	723	895	860	878	205	28%	155	21%
Lot 34-5	03/18/04	2600	1 1/2*	4.5%	525	510	518	730	705	718	865	800	833	200	28%	115	16%
Lot 35-1	03/19/04	2600	1 1/2*	4.5%	470	460	465	695	645	670	620	630	625	205	31%	-45	-7%
Lot 35-3	03/19/04	2600	2°	4.8%	520	515	518	750	660	705	825	790	808	187.5	27%	102.5	15%
Lot 36-1	03/19/04	2600	2"	4.3%	535	480	508	770	705	738	840	760	800	230	31%	62.5	8%
Lot 36-4	03/19/04	259	5"	6.5%	490	485	488	545	605	575	715	755	735	87.5	15%	160	28%
Lot 37-1	03/20/04	2600	2 1/2"	4.3%	500	490	495	690	705	698	830	785	808	202.5	29%	110	16%
Lot 37-3	03/20/04	2600	1 1/2"	4.5%	440	540	490	715	755	735	885	885	885	245	33%	150	20%
Lot 38-1	03/20/04	2600	1 1/2"	4.8%	530	540	535	700	750	725	860	840	850	190	26%	125	17%
Lot 38-3	03/20/04	2600	11/2"	4.3%	505	475	490	755	705	730	900	940	920	240	33%	190	26%
Lot 40-1	03/25/04	2600	11/2"	4.0%	480	450	465	645	615	630	820	820	820	165	26%	190	30%
Lot 40-2	03/25/04	2600	1 3/4"	4.2%	505	505	505	675	640	658	780	870	825	152.5	23%	167.5	25%
Lot 40-3	03/25/04	2600	1"	4.0%	560	530	545	635	630	633	885	870	878	87.5	14%	245	39%
Lot 40-4	03/25/04	2600	1 1/2"	4.0%	590	610	600	665	650	658	840	885	863	57.5	9%	205	31%
Lot 41-1	03/26/04	2600	1 1/4"	3.8%	435	385	410	690	765	728	700	800	750	317.5	44%	22.5	3%
Lot 41-3	03/26/04	2600	2"	3.4%	400	435	418	770	800	785	870	780	825	367.5	47%	40	5%
				Concrete Stat	istics			7 Day			8 Day			90 Dav			
		Avera	ese Slump:	1.9"	Avera	ge Flexural	Strength:	500 nsi			101 psi			808 psi			
		Average A	ir Content:	4.4%	SI	D. Flexural	Strength:	43 nsi			52 nsi			71 nsi			
					Mini	mum Beam	Strength:	385 nsi			45 nsi			620 nsi			
					Maxi	mum Beam	Strength: (610 psi		1	i00 psi			940 psi			
					Average Inc	rease, 7 day	to 28 dayi:	201 psi									
				Average Inc	rease, 7 day	to 28 day, %	of 28 day:	28%									

Average Increase, 28 day to 90 day: 107 psi

Fig. 6: Final Pavement Cross Section for Taxiway "WP"

Soil Stabilization

High plasticity soils are less desirable in the pavement sub-grade. Because of their swelling and expansive nature, proper compaction for the preparation of subgrade is difficult to achieve. Recent practice and research have shown that Millions of dollars can be saved by soil stabilization rather than cutting and replacing the unstable soil for sub-grade preparation of pavement.

Soil Stabilization Techniques Adopted at HAS

- Lime-fly Ash Slurry
- Cement Fly Ash Slurry
- Lime-cement Fly Ash (Lcf) Crushed Concrete Base
- Cement/ Fly Ash Crushed Concrete Base
- Blend Of Fly Ash And Bottom Ash.

• High Plasticity Soils are Undesirable for Pavement

• Lime Fly Ash Stabilization gives the Economical, Structurally and Environmentally Sound Pavement Design

General Strength Response Behavior in Lime and Cement

Lime fly-ash Stabilization Model

A Schematic Diagram for Lime Fly ash Stabilization Model

Lime fly-ash Stabilization Research

R/W 4-22 Hobby Airport (2011)

Objective:

•To Evaluate the Change In Index Properties of Lime Fly-ash Stabilized soils.

- •To Study the Compaction Behavior of Stabilized Soils.
- •To Study the Development of Compressive Strength with the Stabilization.
- •To Establish the Relationship Between Compressive Strength and PI Of Virgin Soil.

LIME-FLY ASH

• The addition of lime to clay soils initiates two reactions:

- Cat-ion exchange and Flocculation-Agglomeration Reaction – Rapid reaction- can produce immediate changes in soil plasticity, uncured strength and load deformation properties.
- Pozzolanic Reaction –long term reaction. This results in the formation of various cementing agents which increases strength and durability.
- Pzzolanic Reaction is time dependent reaction, therefore strength development is gradual but continuous for long period of time and some instances it can take several years.

- In Houston, the great majority of the soil is montmorillionite clays with high organic, which are non reactive with lime. The addition of lime only lowers the plasticity index of the soils, while barely increases the compressive strength by 20-50 psi in twenty eight (28) days.
- The addition of Fly ash & lime in such soils helps to achieve extensive pozzolanic strength development in a long run.
- Lime-Fly ash used for the soil stabilization for Runway 4-22 at Hobby Airport in 1988 is probably the first runway in the world to use this technique.

ELLINGTON FIELD AIRPORT - 90-110G - RESULTS OF 90-DAY BREAKS

Table 1: Compressive Strength Results

DRY					
DESCRIPTION	LL	<u>PI</u>	DENSITY (pcf)	<u>q (kPa)</u> q	(psi)
UNMODIFIED CLAY	55	38			
UNMODIFIED SANDY CLAY	45	29			
CLAY					
W/7% LIME		12			
CLAY					
W/4% LIME & 10% FLYASH		NP	97.8	3.50	50.83
		NP	97.6	4.20	60.56
CLAY					
W/4% LIME & 12% FLYASH		NP	95.1	12.18	174.40
		NP	94.2	12.39	177.22
SANDY CLAY					
W/4% LIME & 10% FLYASH		NP	100.4	19.32	276.11
		NP	100.6	16.38	234.44
SANDY CLAY					
W/4% LIME & 12% FLYASH		NP	103.2	20.02	286.39
		NP	101.0	28.21	403.61

Samples made on: September 29, 1990 Samples tested on: January 4, 1991

The following Standards were used in performing the test:

1.	Sample preparation	ASTM D 558 (Method A)
2.	Compaction	ASTM D 559 (Method A)
3.	Curing	ASTM D 1632
4.	Compressive strength	ASTM D 1633 (Method A)

Table 4: Cement-Flyash Stabilized Subgrade Summary Runway 8r-26l Reconstruction For 4% Cement And 10% Flyash

						7 Day					28 Day		_			90 Day		
		Moisture	Ave. Dens.	QII	Cy12		Difference	e	Cyll	Cy12		Difference		Cyll	Cy12		Difference	
Dute	Report #	Content	pet:	psi	psi	Average	psi	%	psi	psi	Average	psi	%	1	1	Average	psi	%
		-		_	-		-	-		-	-		-	psi	psi		-	-
2/30/2003	38	23.3%	99.5	155	160	157.5	5	3.2%	190	195	192.5	5	2.6%	200	200	200	0	0.0%
2/30/2003	40	21.0%	161.1	50	50	50	0	0.0%	55	50	52.5	5	9.5%	-40	30	35	10	28.6%
2/30/2004	42	16.0%	164.5	425	420	422.5	5	1.2%	565	570	567.5	5	0.9%	725	770	747.5	45	6.0%
1/10/2004	94	15.0%	110.5	395	-400	397.5	5	1.3%	680	675	677.5	5	0.7%	1210	1215	1212.5	5	0.4%
1/102004	96	24.6%	95.5	425	440	432.5	15	3.5%	790	790	790	0	0.0%	1130	1235	1182.5	105	8.9%
1/14/2004	136	16.4%	109.9	55	55	55	0	0.0%	60	55	57.5	5	8.7%	65	65	65	0	0.0%
1/20/2004	166	14.8%	110.4	170	155	162.5	15	9.2%	315	325	320	10	3.1%	510	510	510	0	0.0%
1/20/2004	169	15.2%	110.2	180	170	175	10	5.7%	270	280	275	10	3.6%	365	385	375	20	5.3%
1/23/2004	190	16.7%	108.9	215	225	220	10	4.5%	390	390	390	0	0.0%	_460	460	460	0	0.0%
1/23/2004	192	13.5%	113.6	410	410	410	0	0.0%	650	640	645	10	1.6%	885	780	832.5	105	12.6%
3/8/2004	587	19.7%	96.2	395	355	375	40	10.7%	595	580	587.5	15	2.6%	880	840	860	40	4.7%
3/8/2004	588	17.6%	105	115	110	112.5	5	4.4%	355	365	360	10	2.8%	725	700	712.5	25	3.5%
3/8/2004	589	15.1%	107.4	330	385	357.5	55	15.4%	680	695	687.5	15	2.2%	1000	885	942.5	115	12.2%
3/24/2004	756	14.8%	111.5	150	165	157.5	15	9.5%	165	170	167.5	5	3.0%	250	275	262.5	25	9.5%
3/24/2004	759	16.7%	109	105	105	105	0	0.0%	105	110	107.5	5	4.7%	125	115	120	10	8.3%
3/28/2004	803	19.4%	105.1	40	40	40	0	0.0%	35	35	35	0	0.0%	55	50	52.5	5	9.5%
3/28/2004	806	20.5%	163.7	45	45	45	0	0.0%	40	40	40	0	0.0%	65	75	70	10	14.3%
3/28/2004	809	13.4%	98.5	70	70	70	0	0.0%	80	90	85	10	11.8%	250	265	251.5	15	5.8%
3/30/2004	826	15.5%	112.3	445	460	452.5	15	3.3%	780	760	770	20	2.6%	1190	1165	1177.5	25	2.1%
3/31/2004	837	13.3%	102.2	240	250	245	10	41%	355	345	350	10	2.9%	475	495	485	20	41%
3/31/2004	840	12.8%	164.3	345	335	340	10	2.9%	435	445	440	10	2.3%	805	706	755.5	99	13.1%
3/31/2004	843	16.5%	106.8	175	170	172.5	5	2.9%	325	345	335	20	6.0%	645	730	687.5	85	12.4%
4/16/2004	968	18.9%	164.5	280	290	285	10	1.5%	430	445	437.5	15	3.4%	595	545	580	30	5.2%
4/16/2004	970	19.1%	164.4	345	350	347.5	5	1.4%	520	510	515	10	1.9%	735	710	777.5	35	1.6%
4/16/2004	973	20.5%	162.4	320	310	315	10	3.7%	380	360	370	20	5.4%	470	460	465	10	3 394
4/19/2004	991	21.4%	100	160	155	157.5	5	3.2%	250	244	252.5	5	2.0%	135	130	1125	5	1.5%
4/19/2004	993	14.1%	107.7	580	575	577.5	5	1.9%	660	690	675	30	4.1%	815	806	810	10	1 304
4/19/2004	990	13.8%	112.1	360	175	367.5	15	41%	605	590	507.5	15	2.5%	725	715	730	10	1.494
4/30/2004	1068	164%	1051	760	755	757.5	4	0.7%	1475	1310	1302.5	165	11.8%	1860	1836	19475	26	1.49/
130/2004	1069	181%	164.7	490	515	1975	35	7.0%	055	875	800	120	146%	1710	1440	10475	120	0.59/
1307004	1070	18.7%	105	145	140	1475		1.5%	175	245	260	20	11.5%	115	300	307.5	1.50	9.370
522004	1082	71.4%	853	575	570	577.5		0.00	770	750	776	20	4 10/	730	340	746	15	4.9%
532004	1084	15.1%	102.1	275	260	367.5	15	5.68/	120	400	100	.0	4.1%	130	100	140	30	4.0%
520004	1095	13.29/	05.6	60	100	60	0	0.00/	400	-00	400		4.18/	450	400	400	10	11%
5.50004	1000	14.70	-210	00	60	60		10.69/	1024	-	645	2	0.1%	100	90	50	0	0.0%
AN2004	1100	14.276	101.7	30		300	00	10.0%	1005	800	945	180	19.0%	1445	1565	1505	120	8.0%
5/5/2004	1100	14.9%	101.2	425	425	425	0	0.0%	580	565	572.5	15	2.6%	730	675	702.5	55	7.8%

				Strength	Statistics		
	Moisture Den	sity	7 Day	7 Day 28 Day			90 Day
Content pef.		Avg. Compressive Strength, psi: 286		Avg. Compressive Strength, psi	446	Avg, Compressive Strength, psi	
Average	17.2%	104.1	S.D. Compressive Strength, psi	180.9	S.D. Compressive Strength, psi	303.4	S.D. Compressive Strength, psi
St. Dev.	3.1%	5.8	Minimum Strength, psi	40	Minimum Strength, psi	35	Minimum Strength, psi
Minimum	12.8%	85	Maximum Strength, psi	760	Maximum Strength, psi	1475	Maximum Strength, psi
Maximum	24.0%	114	Average Within Set Variation, psi	11.0	Average Within Set Variation, psi	229	Average Within Set Variation, psi
			Number of sets:	36	Number of sets:	36	Number of sets:
			Average compressive strength, 2000 kPa		Average compressive strength, 3120 kPa		Average compressive strength, 4400 kPa

630 437.0

30

1860

344 36

Sample No.	Sample Description	% Finer than #200 Sieve	LL	PL	Ы	Max Dry Density Pcf	Optimum Moisture %
1	Dark Gray Fat clay w/sand	85	63	25	38	97.5	22.4
2	Dark Gray Fat clay w/sand	85	68	25	43	99.9	22
3	Dark Gray Fat clay w/sand	84	70	26	44	96.8	23.1
4	Dark Gray Fat clay w/sand	85	66	24	42	97.8	23.4
5	Light Gray Reddish Brown Lean Clay w/sand	76	40	19	21	106	18.4
6	Reddish Brown Lean Clay w/sand	75	40	18	22	110	16.2
7	Light Gray Reddish Brown Lean Clay w/sand	76	40	18	22	101.1	21.2
8	Reddish Brown Lean Clay w/sand	75	46	20	26	109.9	16.8

Soil Sampling/ Test Results Runway 4-22 Hobby Airport, 2011

LIME-FLY ASH

Sample	Soil Description	PI of	PI of	%	Avg.	Avg. Compressive		
No.		Virgin	Stabilize	Compaction	St	Strength, psi		
		Soils	d Soils		7	28	90	
					Days	Days	Days	
1	Dark Gray Fat Clay w/Sand	38	11	95	285	495	635	
3	Dark Gray Fat Clay w/Sand	44	12	99	355	473	525	
5	Light Gray Reddish Brown Lean Clay w/Sand	24	9	98	428	483	655	
8	Reddish Brown Lean Clay w/Sand	26	11	100	450	615	723	

4% lime and 8% of Fly ash: 90 Days Compressive Strength, 2011

LIME-FLY ASH: Hobby Airport

Sample No.	Soil Description	PI of Virgin	PI of Stabilized	% Compaction	Avg. Compressive Strength, psi			
		Soils	Soils		7 Days	28 Days	90 Days	
1	Dark Gray Fat Clay w/Sand	38	9	95	408	465	550	
3	Dark Gray Fat Clay w/Sand	44	9	97	400	568	720	
5	Light Gray Reddish Brown Lean Clay w/Sand	24	6	98	390	493	678	
8	Reddish Brown Lean Clay w/Sand	26	9	98	453	523	675	

6% lime and 8% of Fly ash: 90 Days Compressive Strength, 2011

Moisture Density Relationship (Hobby Airport, 2011)

Lime Fixation Test

Test Lime Fixation The Indication Of Is **Plastic Limit**

Compressive Strength

Average Compressive Strength

Relationship Between PI VS. Compressive Strength (Hobby Airport, 2011)

LIME-FLY ASH: (PI of Virgin Soils=44)

6% Lime and 8% of Fly ash Combination Resulted Average Highest Compressive Strength @ 90 Days

LIME-CEMENT FLY ASH (LCF) CRUSHED CONCRETE

LIME-CEMENT-FLYASH BASE COURSE

0	LCF	Technology	developed	by	Nai	Yang
---	-----	------------	-----------	----	-----	------

- Pozzolanic base stabilization
- 4 Airports used LCF base stabilization
- > Newark International Airport 1969
- Portland International Airport 1974
- Zurich, Switzerland, International Airport 1979
- Bush Intercontinental Airport 1986

RUNWAY 9-27 LCF PAVEMENT GEORGE BUSH INTERCONTINENTAL AIRPORT – HOUSTON
LCF material mix proportions by weight: for construction

Sand/gravel	73.5%
Bank Sand	12.5%
Lime	4.0%
Cement	0.5%
Fly Ash	9.5%

LCF Stabilized Base - Runway 9-27

Pavement Cross-Section Runway 9-27

Compressive Strength LCF Stabilized Base - Runway 9-27

Tensile Strength LCF Stabilized Base Runway 9-27

- 1,200 psi
 - 2,200 psi 3,000 psi
- 1997
- 2001

1987

1993

2008

- 3,200 psi
- 3,500 psi
- Long-term Strength Gain
- Autogenous Healing of Micro-cracks

- As a part of improvement program at BIAH, Runway 15R-33L was upgraded
- Category I precision runway, 150 feet wide by 10,000 feet long, capable of handling group V carrier aircraft.
- Approximately 6 miles of new taxiways were built including new parallel taxiway WP, total construction cost was approximately \$81 Million.

Improvement Layout Taxiway WP 15R -33L

Preliminary Pavement Design

- 12-inches of PCC; 20-inches of LCF; 8-inches of CFA
- 14-inches of PCC; 18-inches of LCF; 8-inches of CFA
- 15-inches of PCC; 15-inches of LCF; 8-inches of CFA
- 16-inches of PCC; 13-inches of LCF; 8-inches of CFA
- 17-inches of PCC; 10-inches of LCF; 8-inches of CFA

PCC Layer Thickness, Inches (EPCC = 4,000,000 psi	LCF Layer Thickness, Inches (ELCF = 1,000,000 psi)	Load Induced Edge Stress, psi	Load and Curling Edge Stress, psi
	24	301	401
8	18	417	517
	12	611	711
10	24	285	385
	18	364	464
	12	416	516
12	24	252	352
5000	18	322	422
	12	392	492
14	24	241	341
	18	287	387
	12	323	423

Summary of Load and Curling Stresses Induced in PCC from FEM Analysis

Final Pavement Cross Section LCFRCCB Taxiway- WP

- The targeted strength after 6-months of field cure was between 400 and 600 psi. This curing effect was modeled in the laboratory by curing the mixtures at 113°F for 45-days. This correlation between laboratory and field curing was based on previous research and a literature review.
- The target compressive strength after one-year of service was between 800 and 1,200 psi.

- It is important to remember that a long, steady strength development that will continue well beyond one-year. Such a process will minimize volume change due to shrinkage and will maximize Autogenous healing, which will in turn limit fatigue-cracking damage.
- The goal for the LCF is to provide acceptable strength and load-carrying ability without becoming too rigid. A very rigid sub-base below the PCC slab exacerbates the edge and corner stresses induced by temperature curling and warping of the slab, whereas, a less rigid sub-base provides a "cushion" effect reducing such stresses.

Fig. 7: LCFRCCB COMPRESSIVE STRENGTH RESULTS (Average)

Conclusion:

- A mixture of Lime, Cement, and Fly ash (LCF) was used as a sub base on taxiway WP to support a Portland cement concrete pavement surface.
- The LCF layer was engineered to provide a target strength at the end of one year of service of about 1,000 psi and a concomitant resilient modulus of about 1,000,000 psi.
- The LCF was designed to gain strength in a slow, controlled manner in order to reduce shrinkage cracking and to optimize autogenous healing over the life of the pavement.
- Non destructive test at the end of one year life showed an E value of 900,000 psi for LCF layer
- LCF mixture gained strength in accordance with the trend lines that predict strength gain based on laboratory testing
- The LCF uses recycled crushed concrete as the aggregate source and locally available, Class C fly ash. This was the first use of LCF as a sub base for a PCC pavement in the world.

CEMENT AND SLAG: Composition & Ingredient

			Percentages for
			Ground
	Percentag		Granulated
Chemical	es for	Percentages	Blast Furnace
Compositio	Portland	for Class "C"	Slag, Grade
n	Cement	Fly Ash	120 (GGBFS)
CaO	65	31	42
SiO ₂	20	35	38
AL_2O_3	4	17	8
Fe ₂ O ₃	3	6	Trace
MgO	3	5	7
SŌ3	3	3.5	
S			1
Na ₂ O+K ₂ O	1	1.5	0.4
MnO			1

CEMENT AND SLAG: Composition & Reaction

- When GGBFS is coupled with cement, a Synergistic combination is formed.
- Each products hydrates on its own, forming strength bearing Calcium
- Silicate Hydrates (CSH).
- Excess Silica from GGBFS and the excess Calcium from Cement react to form additional strength bearing CSH in the pore space of concrete which makes stronger, denser and decreased permeability.

Cement	+	H ₂ O		CSH	+	Ca(OH) ₂
GGBFS	+	H ₂ O		CSH	÷	SiO ₂
SiO ₂	+	Ca(OH) ₂	+	H ₂ O	=	CSH

PORTLAND CEMENT: Composition & Reaction

Concrete Ingredients Portland Cement					
Type of Cement	Description	Composition %			
		C ₃ S	C ₂ S	C ₃ A	C₄AF
	General Purpose	48-50	24-26	5-13	7-9
II	Modified General	45-47	28-30	5-7	11-13
	Purpose				
	High Early Strength	55-57	14-16	11-13	7-9
IV	Low Heat	29-31	45-47	4-6	12-14
V	Sulfate Resistant	42-44	35-37	3-5	11-13

Chemical Reactions: Cement and Fly Ash

CaO - Cementitious Materials

MgO

 Al_2O_3

SiO₂ - Pozzolanic Materials

 Fe_2O_3

 $CaO+MgO+H_2O+AI_2O_3/SiO_2/Fe_2O_3 = Cementitious Paste + Ca(OH)_2$ $Ca(OH)_2+A1_2O_3/SiO_2/Fe_2O_3 = Cementitious Paste$

CEMENT AND SLAG- Mixed Proportion

Cement, Type I	270 lbs/C.Y.
Class "F" fly ash	135 lbs/C.Y.
Blast furnace slag, Grade 120	135 lbs/C.Y.
Total cementitious materials	540 lbs/C.Y.
Coarse aggregate (1.5" granite)	1,193
	lbs/C.Y.
Fine aggregate (siliceous sand)	1,193
	lbs/C.Y.
Water	209 lbs/C.Y.
Water/Cementitious materials	0.39
ratio	
AEA	4.5 ozs/cwt
WRA	22.0 ozs/cwt

Runway 8L-26R Reconstruction 90 Days Concrete Summary

Concrete Statistics

Average Air Content = 4.4%

Average Slump =1.9"

Strength Types	7 Days	28 Days	90 Days
Avg. Flexural Strength	500 Psi	701 Psi	808 Psi
	(3500 kPa)	(4900 kPa)	(5650 kPa)
S.D, Flexural Strength	43 Psi	52 Psi	71 Psi
Min. Beam Strength	385 Psi	545 Psi	620 Psi
Max. Beam Strength	610 Psi	800 Psi	940 Psi

Runway 8L-26R Reconstruction

The pavement cross-section selected for the Runway and Taxiways were as follows:

Figure 4: Runway and Taxiway Pavement Cross-Section

Runway 8L-26R - Reconstruction

Rehabilitation of Runway 8R-26L

NDT Evaluation Updated 2003

- IMPULSE STIFFNESS MODULUS
- 1998 ISM AVERAGED 4000 kips/inch
- 2003 ISM AVERAGED 3000 kips/inch

OVERLAY PAVEMENT CROSS SECTION

·X

19 1/2" CONCRETE PAVEMENT OVERLAY (2004)

1 1/2" ASPHALT LEVELING COURSE

5 1/2" ASPHALT OVERLAY (1987)

12" CONCRETE PAVEMENT (1968)

9" SOIL CEMENT SUB-BASE (1968)

36" COMPACTED EMBANKMENT (1968)

- •NORMAL STRESS = 20.70 psi
- SHEAR STRESS = 8.2 psi
- PRINCIPLE STRESS = 22 psi
- DISPLACEMENT (DEFLECTIVE) = 0.05"
- NORMAL STRAIN = 0.0000067
- SHEAR STRAIN = 0.0000049
- PRINCIPLE STRAIN = 0.0000072

(ALL FOR X-AXIS)

Advantages of Overlay Solution:

Reduced affect on airport operations.

Total reconstruction would require the removal of 1.25 million Tons of materials.

Reduced construction costs.

Estimated construction cost of full depth replacement twice as much as rehabilitated. \$65 million versus \$31 million.

Reduced construction schedule.

Estimated construction schedule was 12 months, versus 7 months for rehabilitation option.

· · ·	Elevation A-A	Elevation B-B	Elevation C-C
Normal Stress	1,033 kPa (150 psi)	1,047 kPa (152 psi)	6.13 kPa (0.89 psi)
Shear Stress	35.83 kPa (5.2 psi)	4.82 kPa (0.70 psi)	0.34 kPa (0.05 psi)
Principal Stress	1,033 kPa (150 psi)	1,040 kPa (151 psi)	6.13 kPa (0.89 psi)
Displacements	1.11 cm (0.44")	1.11 cm (0.44")	1.09 cm (0.43")
Principal Strain	0.00057	0.00031	0.00040
Normal Strain	0.00057	0.00031	0.00040

Slab Cracking/ Delamination Study: TW-WB

Field Bond Testing

Туре	Degree of Bond	Strength	Location
Pulloff	Full	183 psi	83+00
	Partial	19 psi	82+75
Torsion	Full	219 psi	82+25
	Full	178 psi	82+25

Laboratory Bond Testing

Finite Elemental Analysis: Delamination

40% and 70% Delaminations – Middle Loading

Curing Monitoring and Evaluation

Field Monitoring

Laboratory Monitoring

Date	El	%Cracking	Cure
Mar 5th	0.814	5.6%	WMR
Jun 26 th	0.785		WMR- 1g/150 ft ²
Jun 15-16	0.734		Lithium Relay – 1g/188 ft ²
	0.861		Lithium Relay – 1g/94ft ²

Possible Causes:

Dry and Windy Weather Conditions
Surface wetting behind the paver
Quality of the Cure

Compound
Time of placing
Configurations associated with an overlay

Assessment:

Structural Condition is ok.
Grouting/Anchoring the interface can minimize the potential problem

References:

•Godiwalla, A. (2011). "Advanced, Modern and Innovative Technologies Used at Houston Airport Systems, Stabilized Sub-grade and Stabilized Bases Pavement Surfaces", Airfield Engineering & Asset Maintenance Summit, Singapore Expo & Convention Center, Singapore.

•Pokhrel, D.R. & Godiwalla, A. (2011). "Relationship between Compressive Strength and PI of Virgin Soils Following Lime Fly Ash Stabilization and Evaluating the Compaction Characteristics", Research Report, Department of Aviation, Houston Airport Systems.

•Zollinger, D. & Abu Al-Rub, R. K. (2011). Presentation on "Slab Cracking and Delamination", Project 648, TW-WA, Houston Airport System.

For More Information Please Visit us @

www.fly2houston.com

