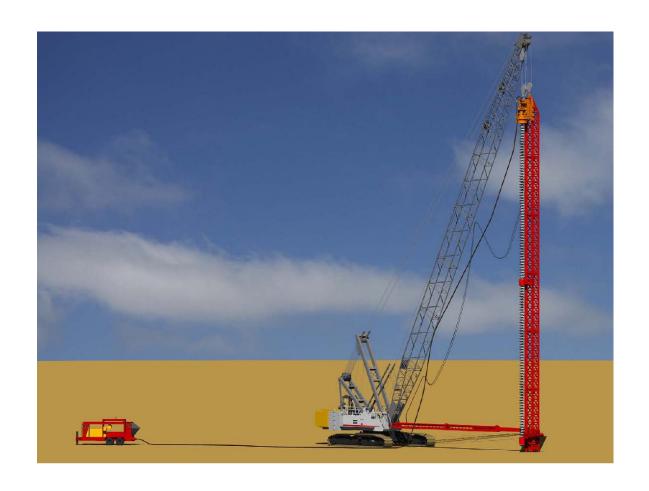
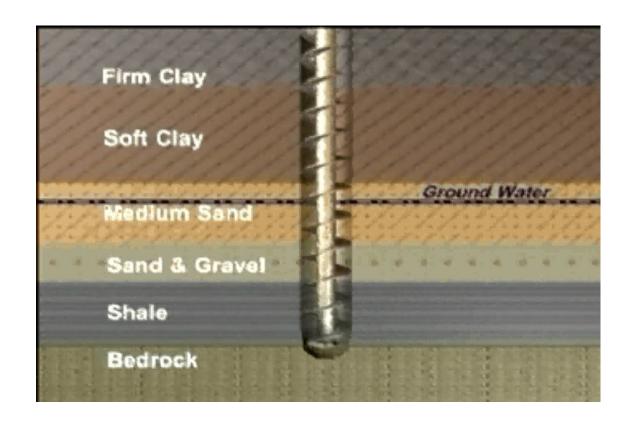
NEW DEVELOPMENTS IN AUGER PRESSURE GROUTED (APG) PILES

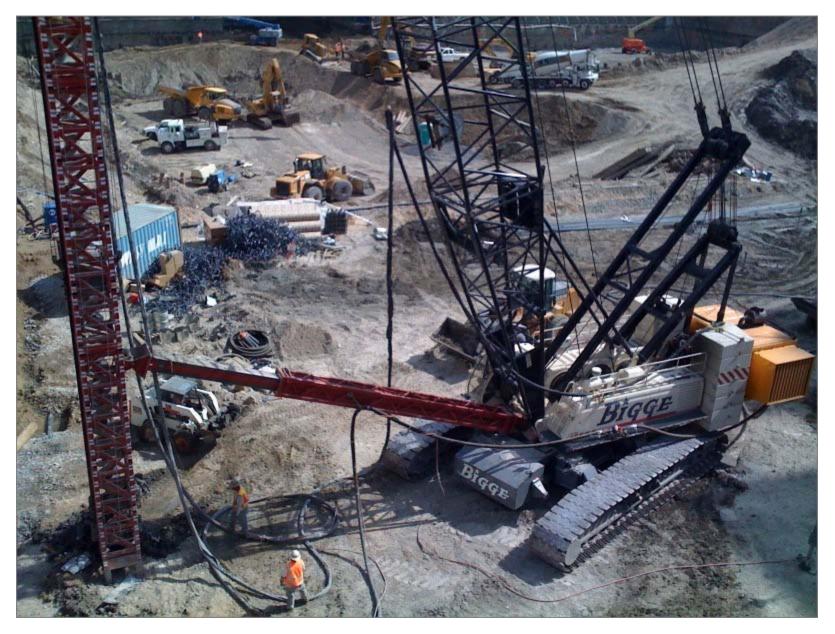
Presented by:

Tracy Brettmann, P.E., D.GE

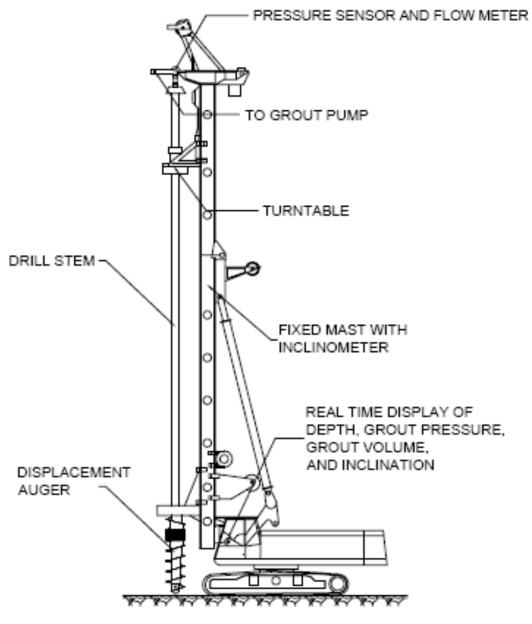

Berkel & Company Contractors, Inc.


Advantages of APG Piles

- Speed of Installation
- High Capacity
- Economic
- Adaptable to Limited Access Areas
- Minimal Vibrations from Installation
- Installation Independent from Soil Conditions

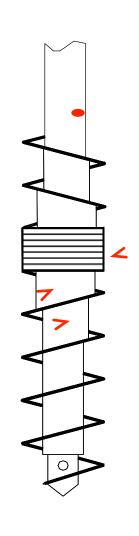

What are APG and APGD piles?

APG Piling Rig


APG PILE INSTALLATION

APG Piling Rig

Crane Pile Installation

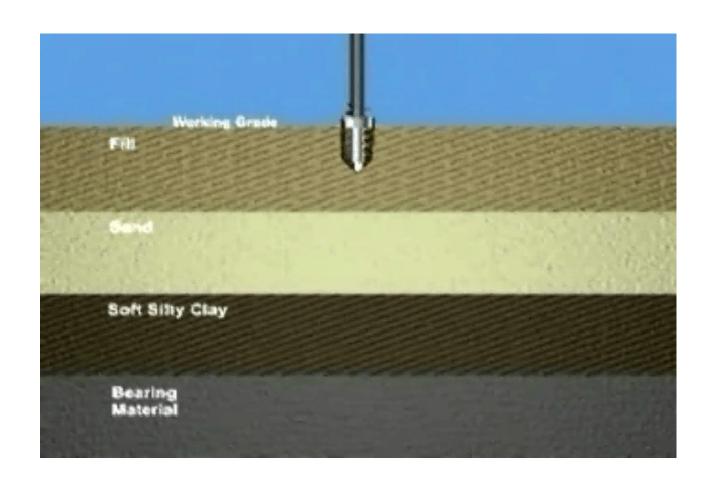


APGD Piling Rig

Berkel Displacement Pile Tool

Reverse flighting

Stem becomes progressively larger, . terminating in the displacing element



Stem, smaller than flighting

Displacing element. Same diameter as the flighting below

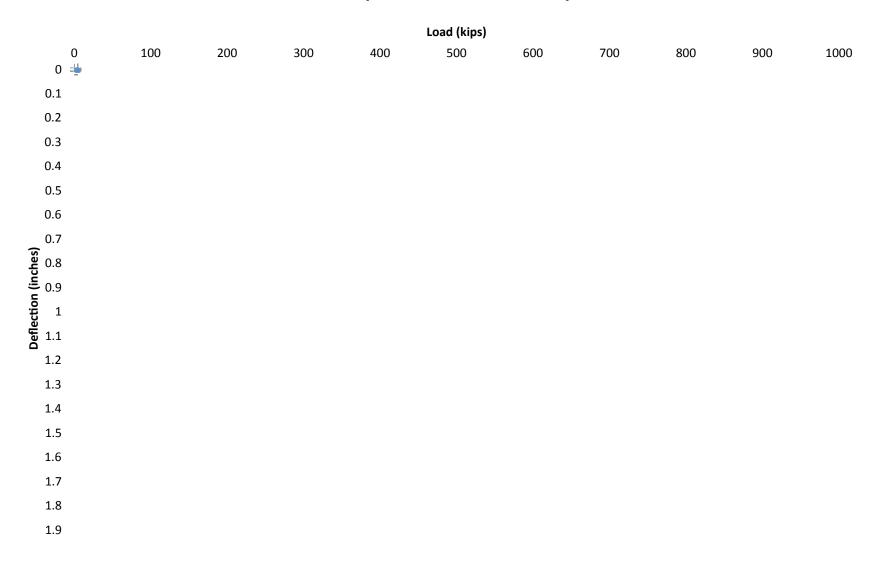
+- 3 feet, regular flighting,

12" to 18" diameter

APGD PILE INSTALLATION

APGD Piling Rig

PILE LOAD TESTING


Pile Load Test in Static Compression

High Strain Dynamic Test

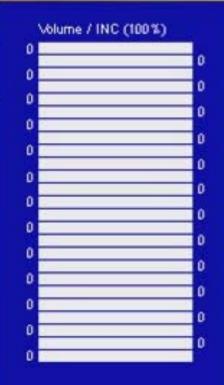
TP-11 (16"-dia. APGD x 45')

Load vs. Deflection Plot

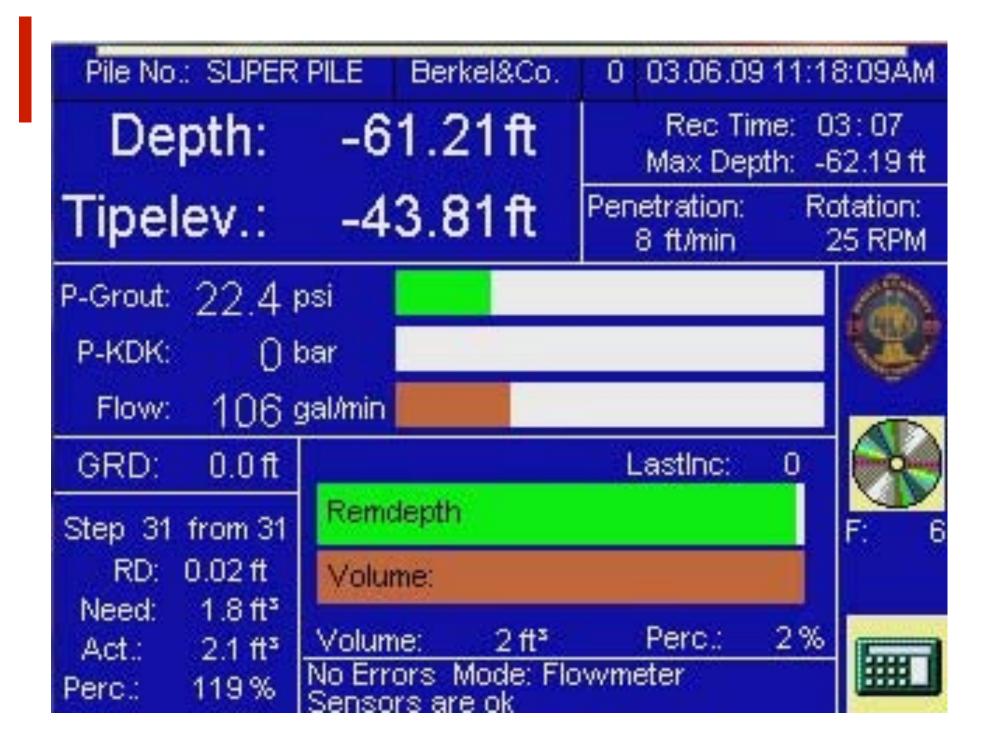

Automated Monitoring Equipment (AME)

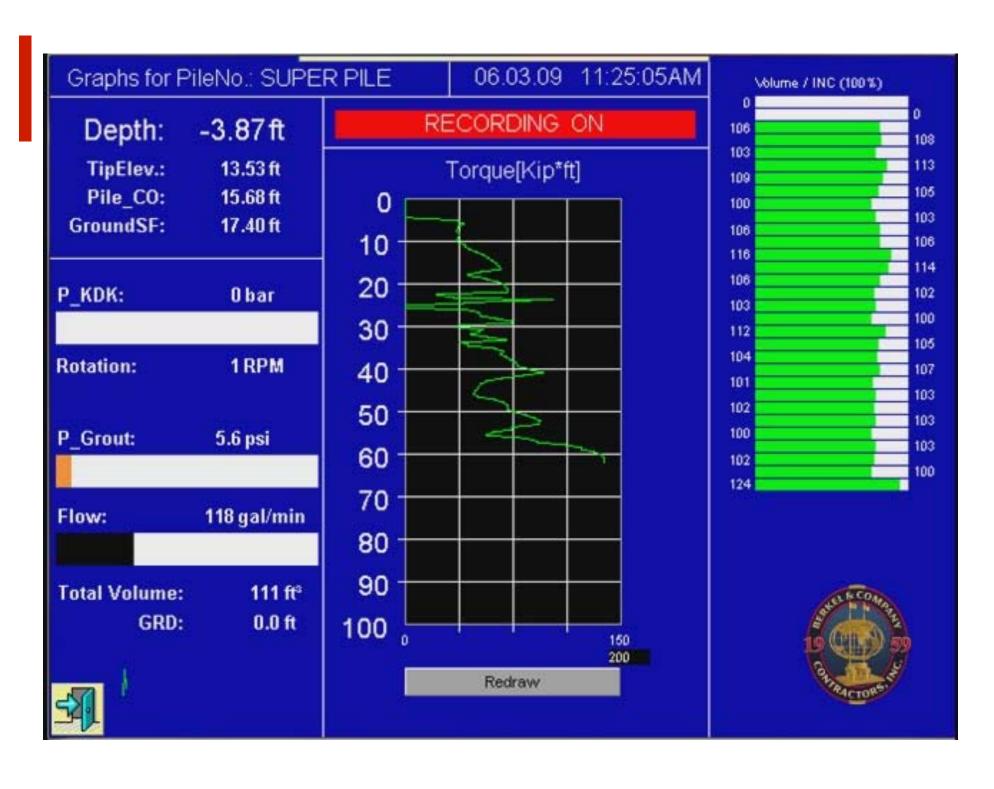
Automated Monitoring Equipment

Inspector's Remote Monitor


Graphs for PileNo.: SUPER PILE 06.03.09 11:14:56AM RECORDING OFF 0.14ft Depth: 17.54 ft Torque[Kip*ft] TipElev.: Pile_CO: 15.68 ft 0 GroundSF: 17.40 ft 10 20 0 bar P_KDK: 30 **Rotation: 30 RPM** 40 50 0.0 psi P_Grout: 60 70 0 gal/min Flow: 80 90 O ft^a **Total Volume:** GRD: 0.0 ft 100 150 200 Redraw

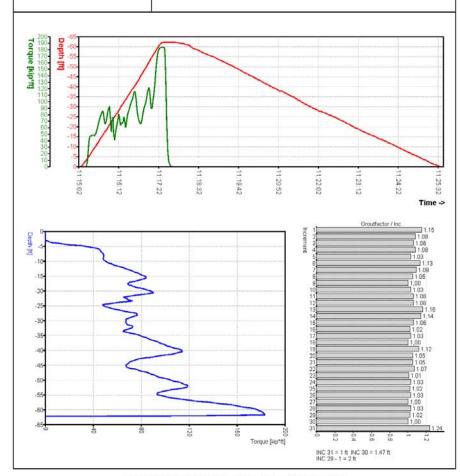
Volume / INC (100%)

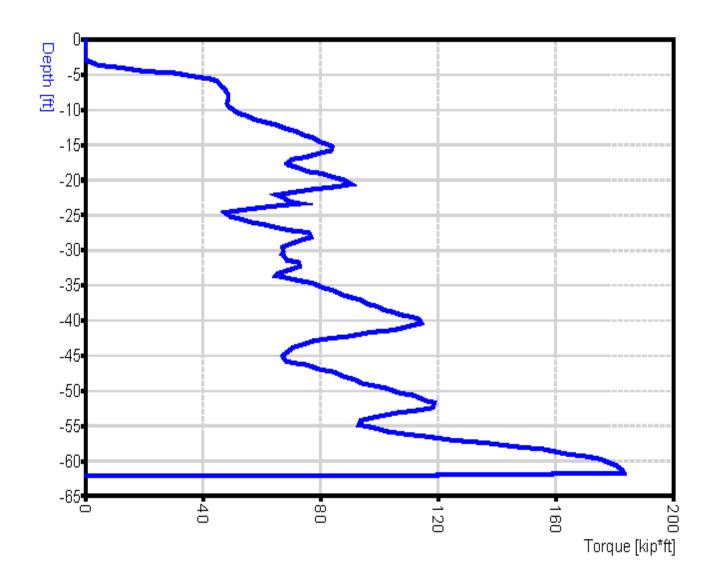

Graphs for PileNo.: SUPER PILE 06.03.09 11:17:01AM RECORDING ON Depth: -49.97ft TipElev.: -32.57 ft Torque[Kip*ft] Pile_CO: 15.68 ft 0 GroundSF: 17.40 ft 10 20 P_KDK: 121 bar 30 Rotation: **27 RPM** 40 50 0.0 psi P_Grout: 60 70 0 gal/min Flow: 80 90 **Total Volume:** O ft³ GRD: 0.0 ft 100 150 200 Redraw



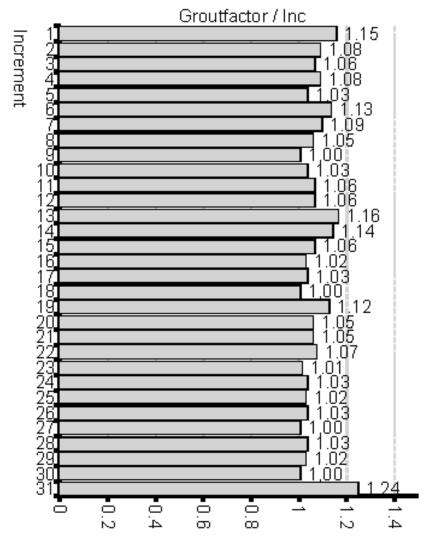
Berkel & Company APGD Pile Installation Record Drill Simulation

Job Site Data:


Project name: Super Pile '09 Project #: 06-2009 Contractor: San Francisco City: DFI State: CA Machine#: 913


Pile Data for Pile No: SUPERPILE '09

Date: 6/3/2009 Start Time: 11:15:02 AM End Time: 11:25:41 AM Total Time: 00:10:39 Max Drill Depth: 62.19 ft Finished Pile Length: 60.47 ft Pile Tip Elevation: -44.79 ft Ground Surface Elevation: 17.40 ft Pile Cut Off Elevation: 15.68 ft


Elapsed Drilling Time: 00:02:26 Elapsed Grouting Time: 00:07:43 Total Pause Time: 00:00:00

Theoretical Pile Volume: 106.90 ft³
Total Grout Volume: 113.06 ft³
Total Grout Factor: 1.06

Auger Torque vs. Depth

INC 31 = 1 ft INC 30 = 1.47 ft INC 29 - 1 = 2 ft

Incremental Grout Factors

Pile Data for Pile No: SUPERPILE '09

Date: 6/3/2009 Max Drill Depth: 62.19 ft

Start Time: 11:15:02 AM Finished Pile Length: 60.47 ft

End Time: 11:25:41 AM Pile Tip Elevation: -44.79 ft
Total Time: 00:10:39 Ground Surface Elevation: 17.40 ft

Pile Cut Off Elevation: 15.68 ft

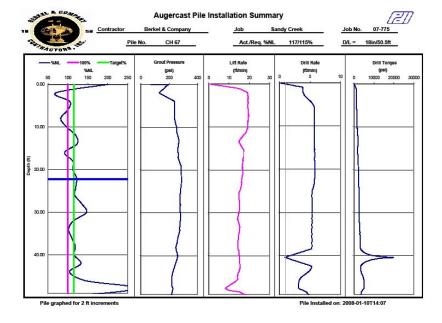
Elapsed Drilling Time: 00:02:26 Theoretical Pile Volume: 106.90 ft3

Elapsed Grouting Time: 00:07:43 Total Grout Volume: 113.06 ft³

Total Pause Time: 00:00:00 Total Grout Factor: 1.06

Summary Data

PIR-A Components



Control Unit

Magnetic Flowmeter

PIR-A Data

Production **Summary Sheet**

Contractor: BERKEL & COMPANY
Job: SANDY CREEK

Pile	Date / Time	Drill	Pile	Drill Time	Bottom	Grout	Install
Name	Installed	Footage (ft)	Volume (yrds)	(h:mm:ss)	Time (h:mm:ss)	Time (h:mm:ss)	Time (h:mm:ss)
Name		Total	(yrus)	(11.111111.55)	Average		
	86 Piles	4336 ft	314 yrds	0:12:11	0:01:21	0:05:03	0:18:35
CH 07	1/7/08 1:19 PM	50.0	3.68	0:09:57	0:00:36	0:03:01	0:13:34
CH 01	1/14/08 11:11 AM	50.6	3.58	0:16:19	0:00:27	0:17:22	0:34:08
CH 02	1/11/08 12:38 PM	50.5	3.72	0:14:25	0:00:32	0:03:50	0:18:47
CH 03	1/9/08 1:08 PM	50.5	3.46	0:16:03	0:00:33	0:03:53	0:20:29
CH 04	1/8/08 12:21 PM	50.5	3.66	0:09:55	0:00:11	0:03:59	0:14:05
CH 05	1/7/08 4:35 PM	50.6	3.86	0:12:09	0:00:05	0:03:45	0:15:59
CH 08	1/8/08 11:57 AM	50.5	3.51	0:11:29	0:00:09	0:03:24	0:15:02
CH 08	1/14/08 10:15 AM	50.5	3.86	0:10:26	0:00:41	0:03:44	0:14:51
CH 09	1/11/08 12:19 PM	50.5	3.87	0:12:51	0:00:18	0:03:51	0:17:00
CH 10	1/14/08 9:37 AM	50.5	3.89	0:15:14	0:00:33	0:03:43	0:19:30
CH 11	1/11/08 8:52 AM	50.5	3.72	0:11:09	0:00:19	0:03:41	0:15:09
CH 12	1/14/08 8:47 AM	50.5	3.73	0:12:34	0:00:23	0:03:43	0:16:40
CH 13	1/9/08 12:29 PM	50.5	3.56	0:12:59	0:00:20	0:03:47	0:17:06
CH 14	1/11/08 8:27 AM	50.5	3.61	0:10:45	0:00:17	0:04:05	0:15:07
CH 15	1/9/08 12:04 PM	50.5	3.57	0:14:24	0:00:36	0:03:46	0:18:46
CH 16	1/8/08 11:35 AM	50.5	3.47	0:11:51	0:00:11	0:03:19	0:15:21
CH 17	1/14/08 10:48 AM	50.5	3.81	0:13:28	0:00:15	0:03:46	0:17:29
CH 18	1/11/08 10:54 AM	50.5	3.68	0:10:50	0:00:15	0:03:20	0:14:25
CH 19	1/14/08 11:48 AM	50.5	4.31	0:16:01	0:00:16	0:04:02	0:20:19
CH 20	1/11/08 11:18 AM	50.5	3.67	0:12:02	0:00:44	0:42:18	0:55:04
CH 21	1/9/08 3:31 PM	50.5	3.45	0:12:39	0:00:21	0:03:36	0:16:36
CH 22	1/8/08 4:06 PM	50.5	3.72	0:30:39	0:00:19	0:05:41	0:36:39
CH 24	1/8/08 3:36 PM	50.5	3.86	0:09:56	0:00:16	0:04:07	0:14:19
CH 25	1/11/08 7:31 AM	50.5	3.78	0:15:07	0:31:44	0:03:20	0:50:11
CH 26	1/10/08 3:20 PM	50.5	3.65	0:13:10	0:00:17	0:03:34	0:17:01
CH 27	1/7/08 12:57 PM	50.0	3.53	0:08:41	0:00:38	0:02:45	0:12:04
CH 28	1/10/08 4:11 PM	50.5	3.51	0:12:35	0:00:18	0:03:23	0:16:16
CH 29	1/14/08 9:12 AM	50.5	3.58	0:10:45	0:00:35	0:10:09	0:21:29
CH 30	1/11/08 10:25 AM	50.5	3.59	0:13:30	0:00:29	0:03:08	0:17:07
CH 31 CH 32	1/14/08 8:15 AM	50.5	3.87	0:10:19	0:00:35	0:18:37	0:29:31
CH 32	1/9/08 3:04 PM 1/9/08 11:37 AM	50.5 50.5	3.40 3.68	0:12:42 0:13:32	0:00:21 0:00:30	0:03:30 0:03:44	0:16:33 0:17:46
CH 35	1/8/08 11:16 AM	50.5	3.67	0:13:32	0:00:30	0:03:44	0:17:40
CH 36	1/14/08 7:48 AM	50.5	3.75	0:17:20	0:00:13	0:03:23	0:21:32
CH 37	1/11/08 10:04 AM	50.5	3.65	0:17:20	0:00:28	0:03:33	0:15:49
CH 38	1/10/08 3:51 PM	50.5	3.70	0:11:07	0:00:20	0:03:35	0:16:03
CH 39	1/10/08 2:59 PM	50.5	3.44	0:12:56	0:00:17	0:03:30	0:16:43
CH 40	1/8/08 3:13 PM	50.5	3.74	0:12:55	0:00:17	0:03:38	0:15:06
CH 41	1/7/08 12:42 PM	50.1	3.62	0:07:53	0:00:04	0:03:33	0:11:30
CH 42	1/8/08 7:51 AM	50.5	3.73	0:07:33	0:00:04	0:03:41	0:15:36
CH 43	1/9/08 7:55 AM	50.5	3.71	0:13:15	0:38:48	0:03:32	0:55:35
CH 44	1/11/08 9:32 AM	50.5	3.79	0:09:28	0:07:01	0:10:51	0:27:20
CH 48	1/9/08 11:12 AM	50.5	3.65	0:14:01	0:00:24	0:03:22	0:17:47
CH 47	1/8/08 10:50 AM	50.5	3.48	0:13:07	0:00:15	0:03:33	0:16:55
CH 48	1/7/08 1:54 PM	50.0	3.60	0:09:04	0:00:05	0:03:47	0:12:56
CH 49	1/8/08 1:40 PM	50.5	3.55	0:12:00	0:00:10	0:03:49	0:15:59

Nondestructive Testing (NDT)

NDT Controversy

- Many methods and versions available
- Experiences with NDT have ranged from very good to complete failure
- Reliability of methods have been questioned
- NDT practitioners are unwilling (or unable) to make quantitative judgements
- NDT creates more questions than answers

APG Piles Unique Properties

- Large length to diameter ratio (>30)
- High component of capacity in skin friction
- Pumping grout under pressure through layered soils produces multiple changes in cross-sectional area (bulges)
- These properties limit the applicability of certain types of NDT methods

Integrity Testing Methods

- Impulse echo methods testing from the pile top with a hammer impact
- Limited to an L/D ratio <30
- Cannot detect small (< 1 ft long) defects
- Difficult to distinguish bulges and necking
- Use should be limited to providing additional information - not as a sole pass/fail indicator

Impulse Echo (PIT or PET)

Impulse Echo (PIT)

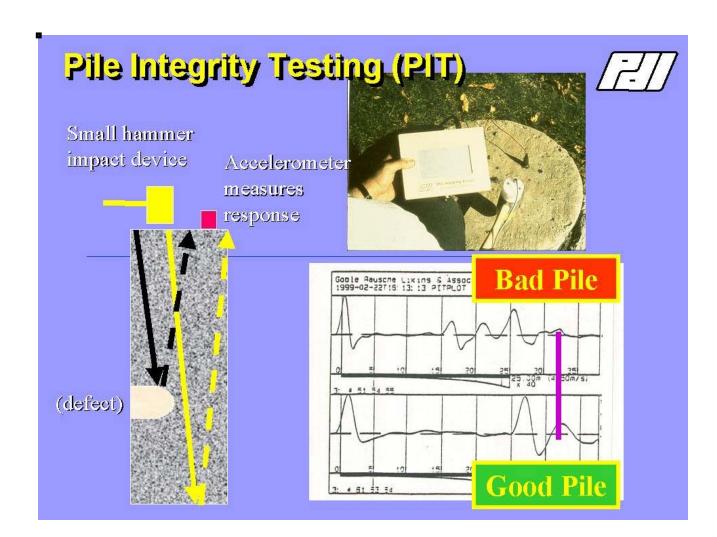
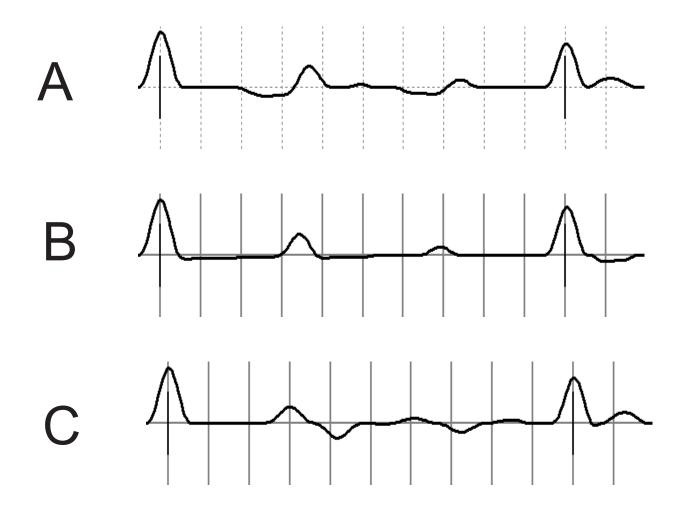
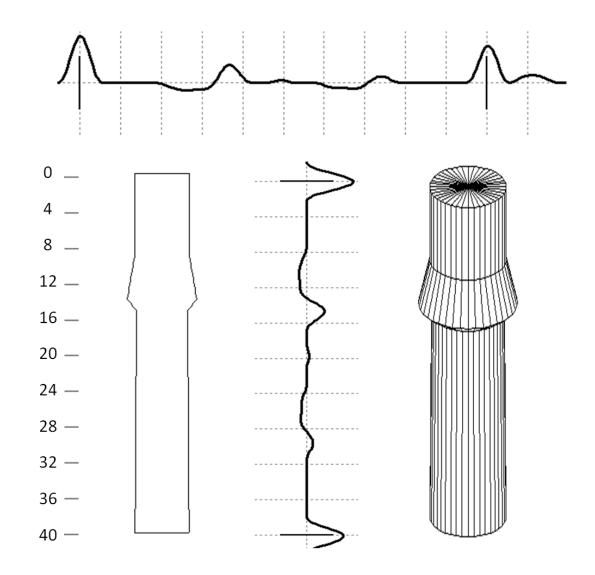
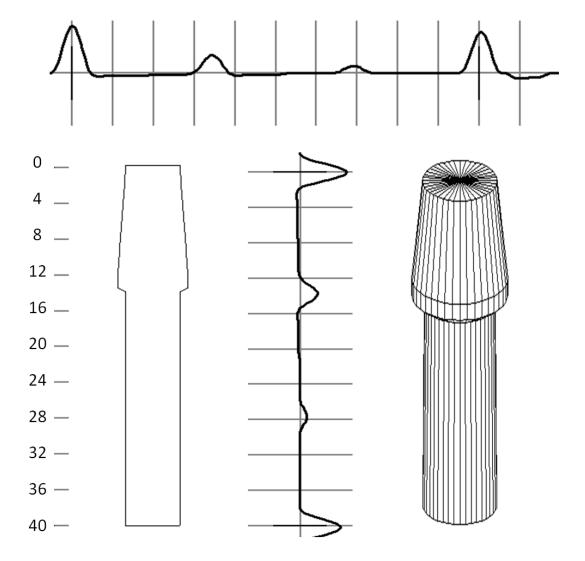
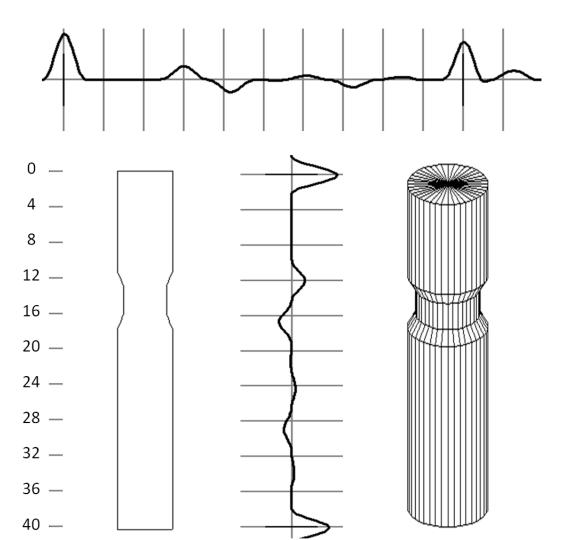
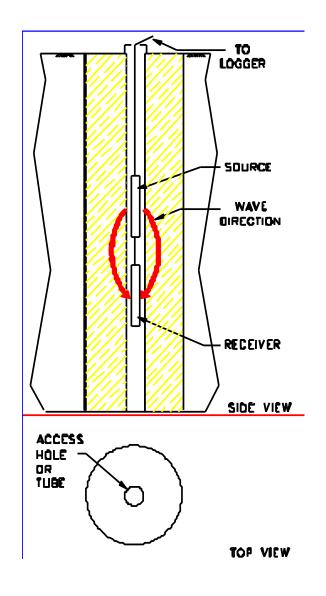




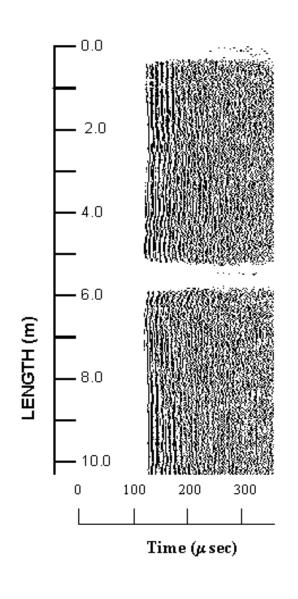
Figure courtesy of Pile Dynamics Inc


Records Can Be Difficult to Distinguish


Simulated Response - Bulge

Simulated Response - Bulge


Simulated Response - Neck



Sonic Logging

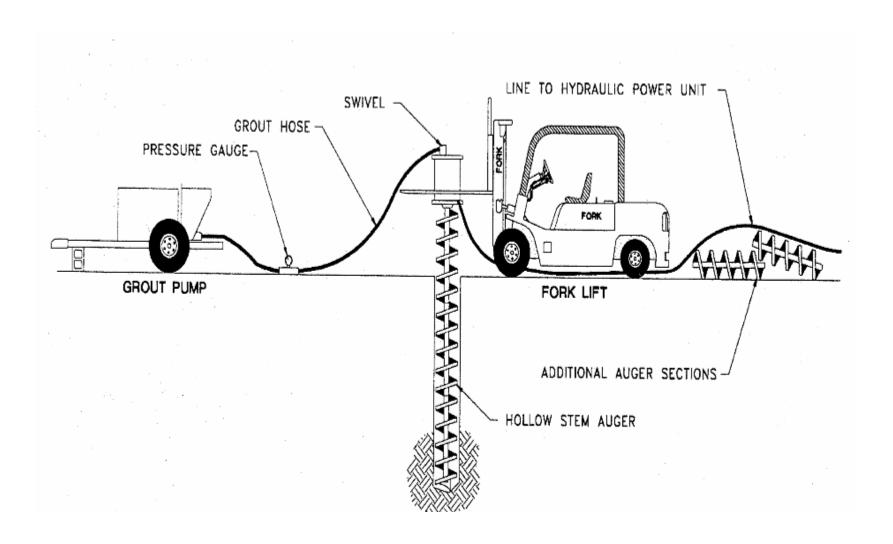
- Crosshole for large piles and singlehole for small (<24 inch) piles
- Developed to overcome sonic echo limitations
- Access tubes must be installed in piles
- Potential for debonding between PVC and grout is a problem
- Typical testing rate is 1 to 10%

SSL Set-Up and Sonic Log

Sonic Logging

NDT Summary

- Evaluation of NDT records must include three initial steps
 - 1. Review the soil conditions
 - 2. Review the detailed pile installation records
 - 3. Review the NDT records
- Use this information to determine if the anomaly is indeed a defect in the pile
- A bulge in the pile would not be considered a defect


Limited Headroom Application

Limited Head Room (LHR) Installation

- Used where overhead clearances are at least 8.5 ft
- Track-mounted or forklift mounted drilling equipment
- Piles are drilled with auger sections typically 3 ft to 10 ft in length
- Installation time much longer than with cranemounted equipment

Typical Limited Head Room Rig

Track Mounted LHR Rig

Earth Retention

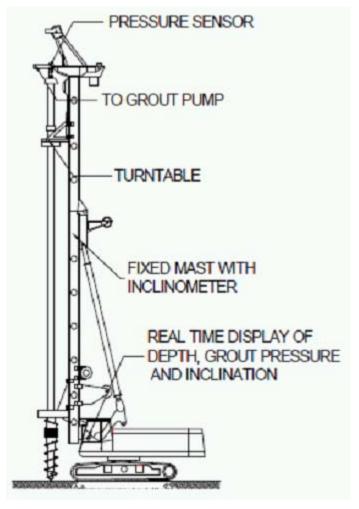
Earth Retention - Temporary

Earth Retention - Permanent

Ground Modification

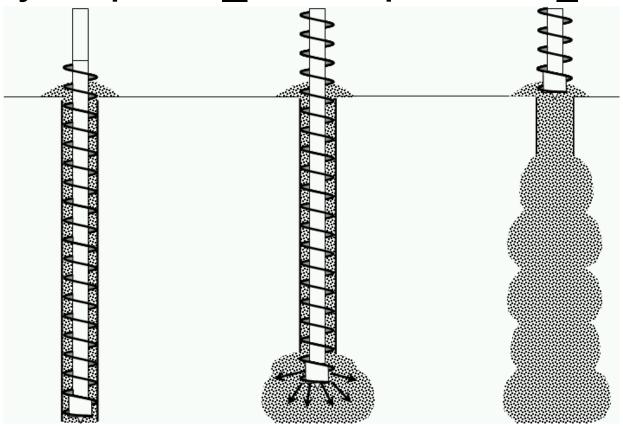
Ground Modification Systems


- Installation of displacement piles results in an increase in soil density
- Liquefaction mitigation
- Piled rafts using APGD piles to increase modulus of soil
- Cast-in-place ground improvement elements (CGE)
- Mechanically compacted ground improvement elements (MGE)


<u>Cast-in-Place</u> <u>Ground Improvement</u>

Elements CGE's

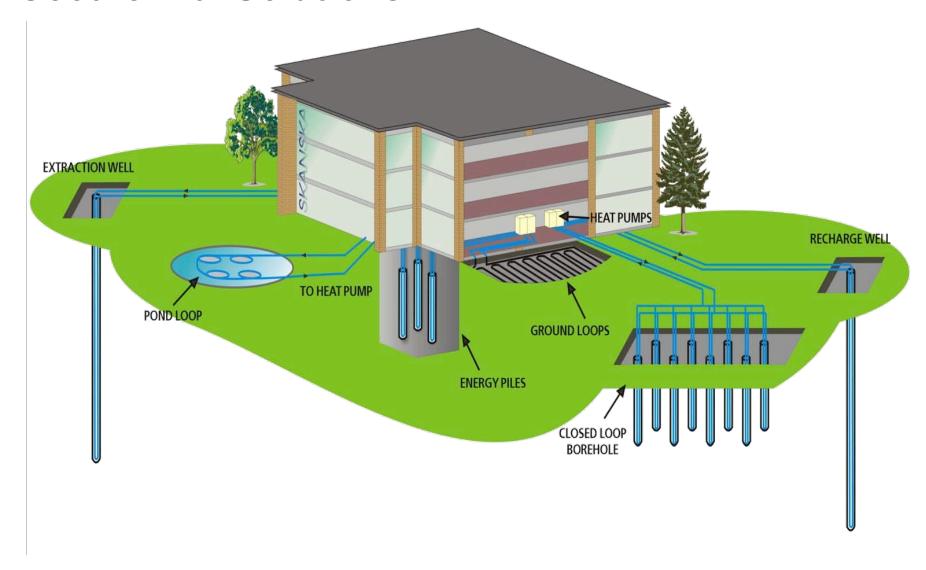
Same equipment and processes as auger pressure grouted displacement piles


May be cast with normal grout mixes or low strength fillers, depending upon application

Alternative: MGE

Feed granular material via reverse rotation to form a Mechanically compacted Ground improvement Element

- 1. Tooling rotated in downward transport direction to the target improvement level. Can be rotated in the upward transport direction where necessary to penetrate hard zones.
- 2. Feed granular material via reverse rotation. Use increase in torque or crowd to determine when to move up to next increment.
- 3. Continue until ground heave is noted at the surface.


Auger Pressure Grouted Energy (APGE) Piles®

Geothermal Technology

- Geothermal heat pumps, or ground source heat pumps, replaces/supplements traditional air conditioning and furnace systems
- The heat pumps simply "move" the heat from one place to another absorbing heat from the ground during heating and extracting heat from the building during cooling
- Geothermal systems deliver up to 4 times more energy than they consume resulting in both cost savings and carbon reduction (up to 50%)

Geothermal Solutions

Benefits of using APGE Piles®

- Low extra over cost for geothermal installation
- Minimal impact on piling program
- Uses building piles as thermal mass
- Heat recovery between seasons
- Makes excellent Value Engineering sense
- Provides a Stable & Sustainable energy source

Thermal Conductivity Testing

Thermal Conductivity

- Conductivity is one of the key components used in both the design and operation of geothermal systems
- The ability to measure the thermal conductivity of an energy pile is key to proving the pile is acceptable, similar to running a pile load test to prove capacity

Thermal Conductivity Values

(SI Units - W/m*K)

• Air: 0.024

HDPE: 0.45 (PVC: 0.23)

Water: 0.6

Glass: 1.0

Thermally Enhanced Borehole Grout: 1.35

Normal Concrete/Structural Grout: 1.35

• Ice: 2.0

Saturated Clay: 2.0-2.5

Saturated Sand: 3.0-4.0

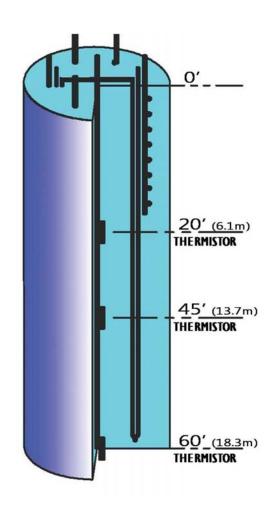
• Limestone: 1.5-3.0

• Shale: 1.5-3.5

Granite: 3.0-4.0

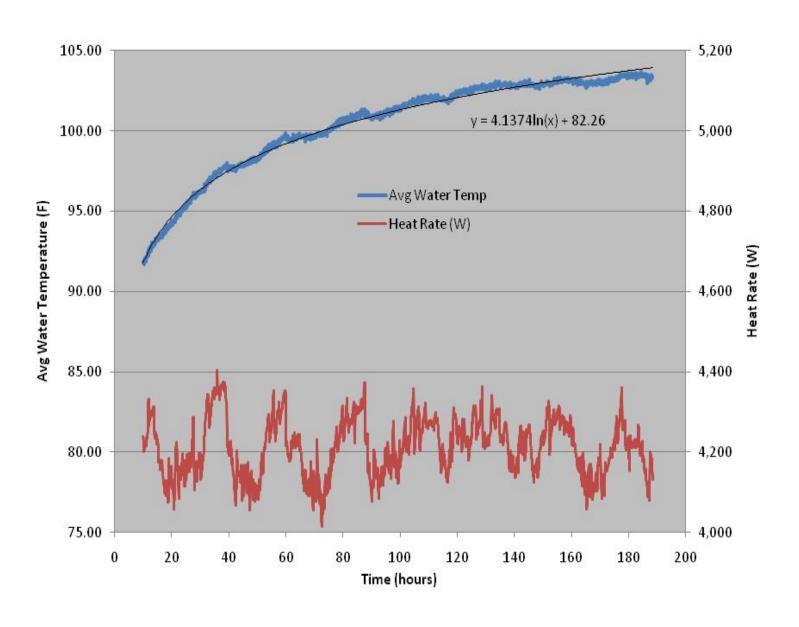
Copper: 390

Diamond: 545


Test Procedures

- ASHRAE published recommended procedures for formation thermal conductivity tests (2007)
- Test duration is 36 hours minimum but 48 hours is preferable
- Data should be analyzed using the line source method
- Power variation should be less than 10%
- Heat rate should be between 15 W to 25 W per foot of depth

Thermal Conductivity Test Unit



APGE Pile® and Pipe Loops

Group Test Results

Conclusions

- APG piles have many advantages that will result in continued use and market growth
- New APGD (displacement) piles can now be better utilized in soft soil conditions and for ground improvement
- Pile load testing, automated monitoring, integrity testing can be used for better quality control
- Piles can be used for low headroom, earth retention and ground improvement applications
- Energy piles can be used for cost effective and energy efficient heating and cooling applications

Berkel & Company Contractors

- Over 50 years of experience
- Nation's largest pile contractor
- Regional offices nationwide
- www.berkelandcompany.com