Contour Plots for Slab Elevation Data using MathCAD

John M. Clark
Clark Engineers, Inc.

$$
\text { May 8, } 2013
$$

Contour Plots for Slab Elevation Data using MathCAD

Why use MathCAD when there are other contour plotting programs available?

Why use MathCAD when there are other contour plotting programs available?

- The power of MathCAD

Why use MathCAD when there are other contour plotting programs available?

- The power of MathCAD
- Plots in inches, mm, feet etc.

Why use MathCAD when there are other contour plotting programs available?

- The power of MathCAD
- Plots in Inches, mm, feet etc.
- Can be done by competent ACAD operator

What is MathCAD

- Live mathematical calculator

What is MathCAD

- Live mathematical calculator
- Equations are live - Not hidden in cells like Excel

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own uníts
-eg. pcf

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
-eg. llbf * mm= kip* ft

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. lbf * mm= kip* ft
- Results can be displayed in any unit system

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. lbf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. lbf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. lbf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)
- Many Built in Units
- For length, time, temp., pressure, current, acceleration, currency,

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. lbf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)
- Many Built in Units
- For length, time, temp., pressure, current, acceleration, currency,
- All physical fields
- Many built in constants

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. lbf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)
- Many Built in Units
- For length, time, temp., pressure, current, acceleration, currency,
- All physical fields
- Many built in constants
- П, e, R, K, F, c, ∞,
- Complex Numbers

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. Ibf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)
- Many Built in Units
- For length, time, temp., pressure, current, acceleration, currency,
- All physical fields
- Many built in constants
- П, e, R, K, F, c, ∞,
- Complex Numbers
- Write small programs for special conditions or functions

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. Ibf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)
- Many Built in Units
- For length, time, temp., pressure, current, acceleration, currency,
- All physical fields
- Many built in constants
- П, e, R, K, F, c, ∞,
- Complex Numbers
- Write small programs for special conditions or functions
- Like a live visible program

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. Ibf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)
- Many Built in Units
- For length, time, temp., pressure, current, acceleration, currency,
- All physical fields
- Many built in constants
- П, e, R, K, F, c, ∞,
- Complex Numbers
- Write small programs for special conditions or functions
- Like a live visible program
- Does pretty much all that spreadsheets will do and much more

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. Ibf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)
- Many Built in Units
- For length, time, temp., pressure, current, acceleration, currency,
- All physical fields
- Many built in constants
- П, e, R, K, F, c, ∞,
- Complex Numbers
- Write small programs for special conditions or functions
- Like a live visible program
- Does pretty much all that spreadsheets will do and much more
- Clark Engineers, Inc. has used MathCAD since 1996 for all calculations

What is MathCAD

- Live mathematical calculator
- Equations are live
- Not hidden in cells like Excel
- Names are unique
- Can use subscripts \& various fonts, Greek letters
- Work with any units
- Can define your own units
- eg. pcf
- Can mix units
- eg. lbf * mm= kip* ft
- Results can be displayed in any unit system
- Never have to multiply or divide by 12
- Hundreds of built in functions (logical, statistical, math, matrices)
- Many Built in Units
- For length, time, temp., pressure, current, acceleration, currency,
- All physical fields
- Many built in constants
- П, e, R, K, F, c, ∞,
- Complex Numbers
- Write small programs for special conditions or functions
- Like a live visible program
- Does pretty much all that spreadsheets will do and much more
- Clark Engineers, Inc. has used MathCAD since 1996 for all calculations
- Built design sheets for our clients

Method

- Plot data in AutoCAD

Method continued

- Plot data in AutoCAD
- Export X, Y, Z coordinates to Exce

Method continued

- Plot data in AutoCAD
- Export X, Y, Z coordinates to Excel
- Copy data vectors to MathCAD

Step 1

- Take accurate elevations of the foundation

Step 1 continued

- Take accurate elevations of the foundation - See FPA paper SC012 for more information on data points

Step 1 continued

- Take accurate elevations of the foundation
- See FPA paper SC012 for more information on data points
- Locate points on accurate field drawing to $\pm 6^{\prime \prime}$ to 12" each way
- If there is an architectural floor plan available, use this to record points

Step 2

- Make an accurate floor plan in AutoCAD

Step 2

- Make an accurate floor plan in AutoCAD
- Set units to decimal

Step 2

- Make an accurate floor plan in AutoCAD
- Set units to decimal
- Set bottom left and corner to 0,0

Step 2

- Make an accurate floor plan in AutoCAD
- Set units to decimal
- Set bottom left and corner to 0,0
- Add data points to AutoCAD drawing
- Must use AutoCAD point command
- Add Elevation labels as text

Step 3

- For each elevation point,

Step 3 continued

- For each elevation point,
- Click on a single point

Step 3 continued

- For each elevation point,
- Click on a single point
- Right click

Step 3 continued

- For each elevation point,
- Click on a single point
- Right click
- Select properties, menu opens

Step 3 continued

- For each elevation point,
- Click on a single point
- Right click
- Select properties, menu opens
- Edit geometry and record elevation value for " z "

Step 3 continued

- Completed plot with elevation points and text for values.

Step 4

- Data Extraction
- GO TO: Tools> Data Extraction>

Step 5

- Select Create a new data extraction

Step 6

- Create a file name for the data extraction: Projectname_ELDATA

Step 7

- Select: Select object in drawing

A

Data Extraction - Define Data Source (Page 2 of 8)
$-\quad$ -

Data source

Drawings/Sheet set

Step 8

" "Select entire drawing" to select points for contour plots

\times Command: -properties

$\therefore \hat{x}$ comend:
Comand: _dataextraction
篤- dataextraction select objects: Specify opposite corner:

Step 9 Select objects cont.

- Check point box and select next

Step 10

- Under Category Filter, uncheck everything except geometry

The following properties were found based on the objects you selected.
Select the properties you want to extract.
(Explore the right-click menu for additional options.)

Step 10

- Under Category Filter, uncheck everything except geometry
- Under Properties Filter uncheck X and Y position, leaving only Z position checked

Step 10

- Under Category Filter, uncheck everything except geometry
- Under Properties Filter uncheck X and Y position, leaving only Z position checked
- Click next

Step 11

- On final screen, select:
- Output to external file

Step 11

- On final screen, select:
- Output to external file
- Save as name and file type desired (.xls)

Step 11

- On final screen, select:
- Output to external file
- Save as name and file type desired (.xls)
- Click here to browse

Step 12

- Data in Excel

Excel Sheet		
436.11	529.89	-0.1
353.7	529.89	0.3
206.11	529.89	-0.4
330.44	406.11	-0.1
290.89	268.89	-1
436.11	189.29	-1
315.11	130.11	-1.5
206.11	130.11	-1.6
552.69	130.1	0
552.89	381.89	-0.2
584.89	529.89	-0.9
709.69	578.1	-0.1
679.5	748.89	0.1
477.25	748.89	0
355.11	748.89	-0.4
330.89	648.89	0
206.11	648.89	-0.6
206.11	406.11	-0.8
206.11	293.11	-1
110.11	268.89	-2.1
18.11	162.08	-3.7
110.11	130.11	-3.3
110.11	18.11	-3.7
248.5	18.11	-2.9
315.11	18.11	-2
436.11	18.11	-1.2
552.69	18.1	-1

Step 13
 Paste data into MathCad

- Create a variable for the first data column (usually x values)

$$
x:=1
$$

Step 13
 Paste data into MathCad

In the red solid box

	(436.11)
	206.11
	330.44
	290.89
	436.11
	315.11
Rlgnt CliCK On	206.11
	552.69
the rea box ana	552.89
	584.89
select paste	709.69
1	679.5
$\mathrm{X}:=\square \quad \mathrm{x}:=$	477.25
	355.11
	330.89
	206.11
	206.11
	206.11
	110.11
	18.11
	110.11
	110.11
	248.5
	315.11
	436.11

Step 13
 Paste data into MathCad

- Add correct units for the vector - In this case inches

Step 13
 Paste data into MathCad

- Add correct units for the vectors
- In this case inches
- Use any desired units

Step 13

Paste data into MathCad

- Repeat steps for Y and \mathbf{Z} vector

Step 14

- Data will automatically generate a contour plot, surface plot and polynomial of any selected order (n) data fit plot.
- Typical order for " n " to use is 1,2 , or 3

Contour Plot

Step 14 continued

- You will probably have to adjust X and Y scale

Raw Data Plot

Surface plot

These views can be rotated

Polynomial Plot

These views can be rotated

Step 15

- Adjust scales as required for each plot For surface plots the Z scale will also have to be adjusted
eg: If min elev= $-43 / 4$ in and max elev= 0.9 in, select say -5 to 1.0 and so on

Step 15 continued

- Select number of spaces for convenient vertical scale
- In this case $6^{\prime \prime}$ or $12^{\prime \prime}$

Step 16

- Iterate on the polynomial order, usually $2^{\text {nd }}$ or $3^{\text {rd }}$ order is ok. Do not use higher than $4^{\text {th }}$ order.

Polynomial Surface
Data Fit

Step 17

- Once the contour plot is set,
- Copy and Paste floor plan into excel
- Zoom in on the floor plan and select all desired members
- Copy and paste contour plot into excel

Step 18

- Send the contour plot to the back and the floor plan to the front

Step 19

- Align the plots so that the contour plot is aligned with the floor plan

Step 20

- Areas of the contour that are outside the floor plan can be filled by pasting white filled areas using excel drawing tools, or group pictures and edit in "Paint" what ever is easiest

Step 21

- Select all areas of the final plot and group them

Step 22

- Copy and paste the finished plot to your report document as required

MathCAD Sheet

This MathCAD sheet can be obtained free from
www.structuralanalysismcad.com by providing three documented appropriate references (engineers, architects, scientists, CAD technicians, contractors etc.) who are not members of FPA.

