ELEVATED SLAB ANALYSIS BY JOHN M. CLARK, MS, PE

PRESENTED TO STRUCTURAL COMMITTEE OF FOUNDATION PERFORMANCE ASSOCIATION

FEB 22, 2017

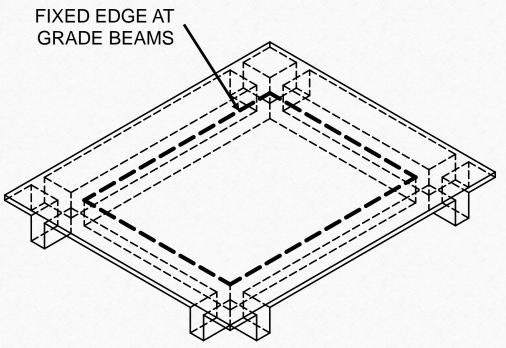
www.clark-engineers.com jmc@clark-engineers.com 936-273-6200

 RECENT FLOODING IN GREATER HOUSTON AREA HAS CAUSED OWNERS TO LIFT HOUSES OUT OF THE POSSIBLE FLOOD ELEVATION.

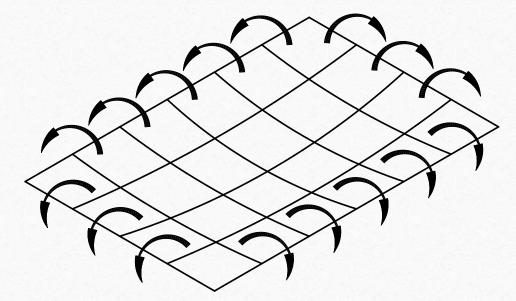
 MOST HOUSES ARE FOUNDED ON SLAB-ON-GRADE TYPE FOUNDATIONS.

 THESE FOUNDATIONS ARE NOT DESIGNED FOR CLEAR SPAN CONDITIONS THAT RESULT WHEN THE FOUNDATION IS LIFTED.

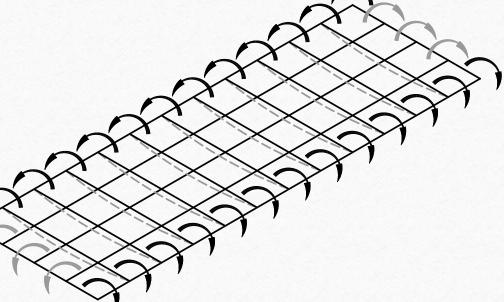
- THE TYPE AND LOCATION OF SLAB REINFORCEMENT IN OLDER FOUNDATIONS IS GENERALLY NOT KNOWN.
- NOTE REINFORCING ON BOTTOM IN THIS PHOTO.



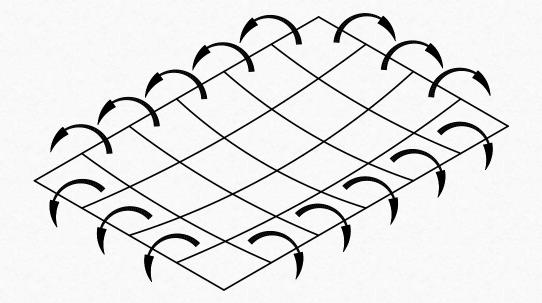
EXAMPLE PLATE


• FOR THIS
PRESENTATION, FOR ALL
EXAMPLES, PLATE SIZE
IS 12 ft. x 15.33 ft.

- FOR RECTANGULAR SLABS SUPPORTED BY GRADE BEAMS ON ALL FOUR SIDES THE EDGE CONDITION CAN BE CONSIDERED AS "FIXED".
- I.E. THERE WILL BE NO CARRY-OVER MOMENTS FROM ADJACENT SPANS SINCE THE BEAM STIFFENERS AT THE EDGES ARE SUFFICIENT TO ABSORB THE EDGE MOMENTS FROM EACH ADJACENT FLAT PLATE PANEL.



- ONCE A FOUNDATION SLAB IS LIFTED, THE SLAB BETWEEN THE GRADE BEAMS IS PLACED IN TWO-WAY BENDING.
- TWO WAY BENDING OCCURS FOR SLABS WHEN THE SIDES ARE EQUAL (a=b) UP TO ABOUT b=2a.



 IF LONGER SIDE IS GREATER THAN TWICE THE LENGTH OF THE SHORT SIDE, ONE WAY BENDING OCCURS.

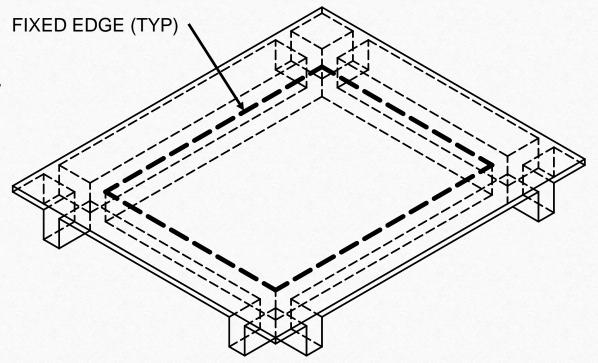
 THERE WILL BE SOME BENDING AT SHORT ENDS IN LONG DIRECTION.

 THERE IS NO CLOSED FORM SOLUTION FOR TWO-WAY BENDING.

CODE REQUIRED LOADS

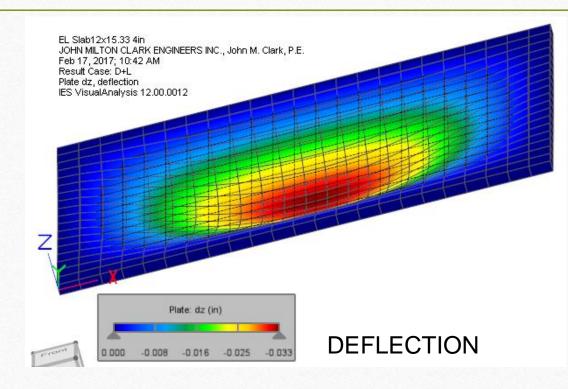
- LIVE LOAD = 40 psf FOR RESIDENTIAL FLOORS (PER ASCE 7-10)
 - OWNER OCCUPIED LIVE LOAD AVERAGE ≈12 psf
 - -ETHICAL ISSUE: WHAT SHOULD <u>EOR</u> USE FOR LIVE LOAD?
- TEMPERATURE REINFORCING
 - ACI 318 STATES THIS MUST BE SATISFIED, FOR A 4" THICK SLAB, A_{ST} = .0018 * 12" * 4" = 0.086 in²/ft
 - WELDED WIRE MESH 6x6x1.4x1.4 SUPPLIES 0.028 in²/ft
 - No. 3 (60ksi) BARS MUST BE SPACED AT 14 in. TO SUPPLY 0.086 in²/ft

SLAB CRACKING

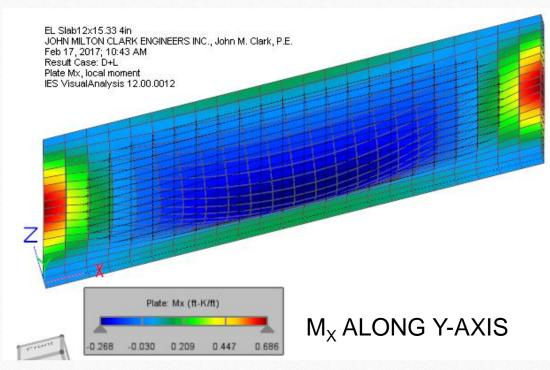

- MOST <u>IF NOT ALL</u> CONCRETE SLABS ON GRADE HAVE SHRINKAGE CRACKS.
- SHRINKAGE CRACKS TYPICALLY FORM AT ≈15' TO 20' SPACING.
- IF SLAB CRACKS, TENSILE STRESS IN EXISTING REINFORCING WILL LIKELY BE AT YIELD DUE TWO-WAY BENDING.
- ONCE STEEL STRESS REACHES YIELD, SLAB WILL START TO DEFLECT EXCESSIVELY AND HANG SIMILARLY TO A CHAIN (DEPENDING ON TOTAL LOAD APPLIED).

METHOD TO ANALYZE TWO-WAY BENDING

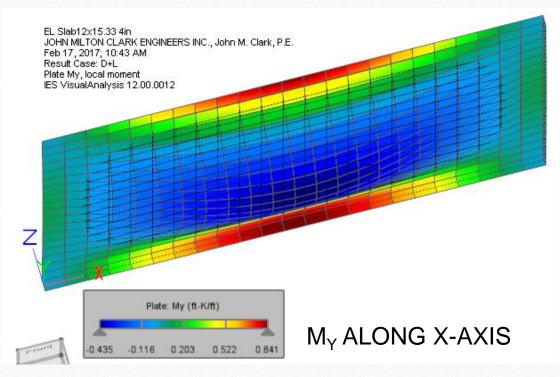
- TIMOSHENKO "THEORY OF PLATES AND SHELLS, 2nd Ed.", PROVIDES SERIES SOLUTIONS FOR PLATES WITH VARIOUS BOUNDARY CONDITIONS.
- ALSO SUPPLIED BY TIMOSHENKO IS AN APPROXIMATE METHOD WITH EQUAL SPANS


METHOD TO ANALYZE TWO WAY BENDING

 IN THIS CASE, A SLAB OF CONSTANT THICKNESS IS SUPPORTED BY A GRID OF GRADE BEAMS.


FINITE ELEMENT METHOD

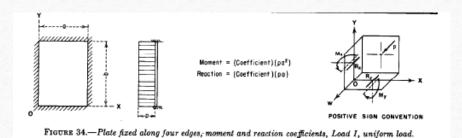
 WITH ADVENT OF POWERFUL DESKTOP COMPUTERS AND POWERFUL FINITE ELEMENT PROGRAMS, PLATE ANALYSIS HAS BECOME GREATLY SIMPLIFIED.

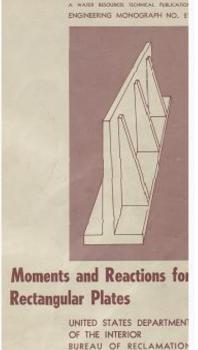

FINITE ELEMENT METHOD

- EACH UNIQUE SIZE AND BOUNDARY CONDITIONS FOR A GIVEN LOAD MUST BE MODELED.
- CAN BE TIME CONSUMING.
- ALSO, INTERIOR PIER SUPPORTS MUST BE CAREFULLY MODELED.

FINITE ELEMENT METHOD

 AND YOU NEED TO HAVE A STRUCTURAL ANALYSIS PROGRAM SUCH AS VISUAL ANALYSIS, SAPP etc. WHICH CAN BE COSTLY, ESPECIALLY IF THERE IS NO OTHER NEED FOR THIS TYPE OF PROGRAM.

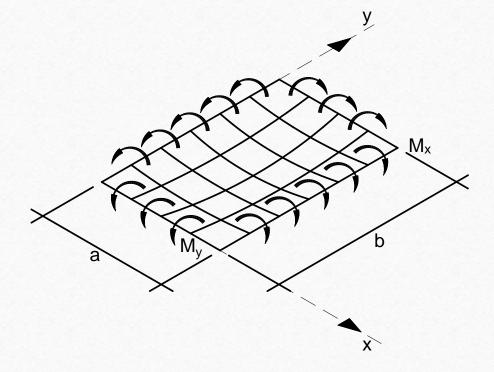



MOMENT AND SHEAR COEFFICIENTS DEVELOPED FROM FINITE DIFFERENCE METHOD

- ANOTHER METHOD TO SOLVE PLATE ANALYSIS IS BY USE OF THE FINITE DIFFERENT METHOD. SEE e.g. GERALD, APPLIED NUMERICAL ANALYSIS.
- IN 1960 US DEPT. OF INTERIOR, BUREAU OF RECLAMATION PUBLISHED ENGINEERING MONOGRAPH NO. 27, "MOMENTS AND REACTIONS FOR RECTANGULAR PLATES. DEVELOPED BY FINITE DIFFERENCE METHOD.

MOMENT AND SHEAR COEFFICIENTS DEVELOPED FROM FINITE DIFFERENCE METHOD

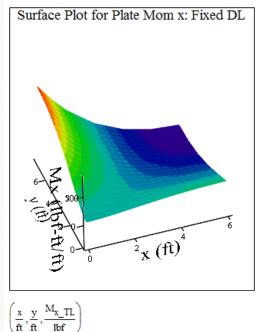
https://www.usbr.gov/tsc/techreferences/hydraulics_lab/pubs/EM/EM27.pdf



	1		M _x					Mv								
	y/0	Fx 3/0	0	0.05	0.1	0.2	0.3	0.4	0.5	0	0.05	0.1	0.2	0.3	0.4	0.
	0.5	+.5055	+.0830	+.0590	+.0376	+.0024	0226	0375	0424	+.0166	+.0113	+.0074	+.0002	0050	0082	-
3/8	0.4	+.5068	+.0825	+.0585	+.0371	+.0022	0225	0372	0420	+.0165	+.0117	+ 0073	0001	0055	0000	
	0.3	+,5060	+.0796	+.0558	+.0348	+.0013	0219	0355	0400	+.0159	+.0110	+.0065	0013	0071	0108	-
	0.2	+.4778	+.0690	+.0470	+.0282	0004	0192	0299	0334	+.0138	+.009	+.0046	0034	0095	0152	01
-	0.1	+.3316	+.0400	+.0254	+.0139	.0017	.0106	0155	0170	+.0060	+.0047	+.0017	0033	0066	0084	00
5	0.05	+.1531	+.0170	+.0108	+.0060	+.0001	0026	0037	0039	+.0034	+.0026	+.0026	+.0044	+.0071	+.0094	+.0
	0	0513	0	+.0005	+.0016	+.0047	+.0076	+.0096	+.0103	0	+.0024	+.0078	+.0234	+.0381	+.0481	+.0
		H. N.	0513	0797	+.0291	+.2203	+.3559	+.4352	+.4612							_
	0.5	+.5142	+.0815	+.0573	+.0359	+.0015	0224	0365	0411	+.0163	+.0115	+.0068	0012	0071	0108	0
- 64	0.4	+.5111	+.0797	+.0557	+.0346	+.0011	0220	0355	0399	+ 0159	+.0110	+.0064	0017	0078	0116	01
~	0.3	+.4928	+.0728	+.0499	+.0303	0000	0203	0319	0356	+.0146	+.0097	+.0051	0031	0093	0132	0
н	0.2	+.4260	+.0568	+.0375	+.0217	0014	0159	0238	0263	+.0114	+.0071	+.0030	0042	0096	0128	0
_0	0.1	+.2350	+.0270	+.0168	+.0090		.0066	0098	0100	+.0054	+.0032	+.0014	0006	0015	0015	00
~		+.0591	+.0099	+.0066	+.0039	+.0011	+.0003	+.0003	+.0003	+.0020	+.0022	+.0034	+.0082	+.0135	+.0174	+.0
	0	0496	0	+.0005	+.0016	+.0049	+.0080	+.0100	+.0108	. 0	+.0025	+.0082	+.0247	+.0399	+.0502	+.0
		×- 5	0496	0651	+.0571	+.2253	+.3598	+.4382	+.4638							
	0.5	+.5143	+.0765	+.0526	+.0319	0001	0214	0336	0376	+.0153	+.0102	+.0054	0033	0101	0144	0
	0.4	+.5045		+.0502	+.0302	0004	0207	0321	0358	+.0147	+.0097	+.0050	- 0037	±.0104	0147	0
%	0.3	+.4660	+.0642	+.0429	+.0251	0012	0181	0274	~.0304	+.0128	+.0082	+.0037	0045	0107	0146	01
н	0.2	+.3697	+.0462	+.0297	+.0166	0017	0127	0186	0204	+.0092	+.0055	+.0020	0039	0082	0106	0
۰	0.1	+.1635	+.0191	+.0119	+.0065	0004	0037	.0056	.0056	+.0038	+.0025	+.0016	\$300.*	+.0036	+.0050	+.00
~		+.0150	+.0063	+.0046	+.0030	+.0018	+.0020	+.0025	+.0028	+.0013	+.0021	+.0042	+.0110	+.0180	+.0231	+.08
	0	0454	0	+.0005	+.0017	+.0050	+.0082	+.0102	+.0109	0	+.0025	+.0083	+.0252	+.0408	+.0511	+.05
		E. D.	0454	0527	+.0410	+.2277	+.3616	+.4394	+.4648							
	0.5	+.4999	+.0686	+.0457	+.0265	0017	0196	0293	0324		+.0087	+.0037	0055	0128	0175	01
×	0.4	+.4845	+.0653		+.0248	0019	0186	0277	0306			+.0034	0056	0126	0171	01
m2_	0.3	+.4311	+.0550		+.0200	0022	0156	0227	0249	+.0110	-	+.0024	0054	0115	0150	01
11	0.2	+.3179		+.0235	+.0126	0019	1010	0142	0155	+.0075	+.0043	+.0014	0033	0064	0081	00
_Φ	D, I	+.1133				+.0001	0018	0025	0026	+.0028	+.0021	+.0023	+.0045	+.0074	+.0098	+.01
6		0109		+.0034		+.0022	+.0031	+.0039	+.0043	+.0009	+.0021	+.0048	+.0129	+.0210	+.0268	+.02
	0	0412	0		+.0017	+.0051	+.0082	+.0102	+.0109	0	+.0024	+.0085	+.0254	+.0409	+.0511	+.05
-		x x	0412			+.2305	+.3626	+.4384	+.4629							
-	0.5	+.4730	_	+.0380		0031	0172	~.0245			+.0070	+.0021	0072	0146	0193	02
	0.4	+.4542			+.0193	0031	0162	0229			+.0065	# .00 IR	0070	0139	0183	01
2					+.0153	0029	0131	0183		+.0092	+.0052	+.0012	0059	0113	0146	01
11	0.2	+.2736	+.0302		+.0094	0020	0079	0107		+.0060	+.0033	+.0010	0026	0047	0057	00
۰	0.1	+.0798		+.0068	+.0037	+.0005	.0005	0006	0006	1500.+	+.0019	+.0027			+.0129	+.01
٩/٥	0.05	0250				+.0025	+.0037	+.0047	+.0051	+.0006	+.0021	+.0051				+.03
+	0	0377				+.0050	+.0080	+.0099	+.0106	0	+.0024	+.0083	+.0251	+.0400	+.0497	+.05
_	$\overline{}$	× ×	$\overline{}$			+.2341	+.3608		+.4546							
-	_				+.0156	0040	0147	0198			+.0054		0082	0153		02
_					+,0144	0039	0137	0184			+.0050	+.0006	0078	0143	0184	011
٠ŀ	_				\$110.+	0033	0109	0143				+.0003	0061			014
					+.0068	0020	0061	0078				+.0007	0020	0033		00
8	-				9200.+	.0007	+.0003			+.0016			+.0068			.010
-	0.05	0316 0351	+.0024				+.0040			+.0005						+.030
ŀ	٠,	0551							+.0100	0	+.0024	+.0082	+.0244	0382	+.0470	.050
- 1	- 1	17	0351	0316	+.0585	+.2373	+.3551	+.4189	+.4389							

MOMENT AND SHEAR COEFFICIENTS DEVELOPED FROM FINITE DIFFERENCE METHOD

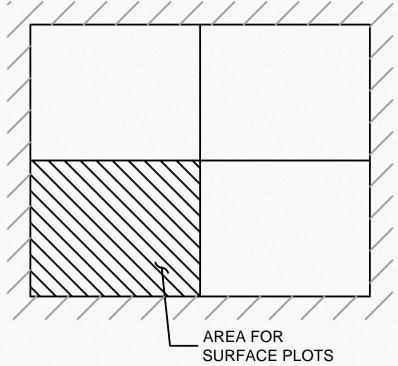
• TABLES OF MOMENT COEFFICIENTS FOR MX AND MY ARE PROVIDED FOR a/b RATIOS OF 3/8, 1/2, 5/8, 3/4, 7/8, & 1 WHERE a IS THE SHORTER SIDE AND b IS THE LONGER SIDE.



MATHCAD METHOD

- CLARK ENGINEERS HAS DEVELOPED A MATHCAD TEMPLATE USING THE TABLES ON PG. 40, FIG. 34 FOR FIXED EDGES WITH UNIFORM LOAD. BOTH DEAD LOAD AND TOTAL LOAD ARE CONSIDERED.
- LIVE LOAD MAY BE FACTORED BY PERCENT TO STUDY EFFECT OF VARIOUS CONDITIONS.
- THE SHEET USES SURFACE POLYNOMIALS FOR EACH SET OF COEFFICIENTS FOR SPECIFIC a/b RATIO, THEN USES THE INTERPOLATION FUNCTION TO COMPUTE COEFFICIENTS FOR A CURRENT RATIO OF a'/b'.

MATHCAD METHOD - SURFACE PLOTS FOR MOMENT COEFFICIENTS



$$\left(\frac{x}{ft}, \frac{y}{ft}, \frac{M_{y_TL}}{1bf}\right)$$

Surface Plot for Plate Mom y: Fixed DL

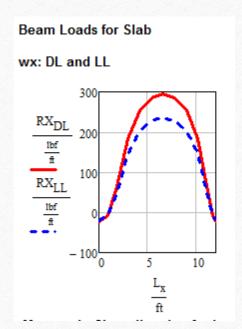
TABLE VALUES: SYMMETRY

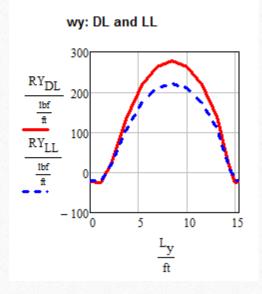
- PLOTS ARE FOR BOTTOM LEFT QUADRANT OF THE PLATE, VALUES ARE QUADRI-SYMMETRIC FOR A PLATE WITH UNIFORM PRESSURE.
- FOR ANALYSIS RESULTS, THE FULL PLATE SOLUTION IS PROVIDED BY APPROPRIATE REFLECTION ABOUT CENTER AXIS.

www.clark-engineers.com jmc@clark-engineers.com 936-273-6200

COMPARE FEA TO MATHCAD

- MAXIMUM EDGE MOMENTS OCCUR AT MID LENGTH OF THE SIDES.
- REACTION COEFFICIENTS ARE COMPUTED BY LINEAR INTERPOLATION FOR CURRENT RATIO a'/b'.
- RESULTS OF THE MATHCAD TEMPLATE WERE COMPARED TO FEA RESULTS OF A PLATE OF DIMENSIONS 12 FT.X15.33 FT. WITH AN 8 INCH GRID.
- THE MCAD TEMPLATE HAD MAXIMUM MOMENTS THAT WERE ABOUT 12-14% HIGHER THAN THE FEA RESULTS FROM VA MODEL SO MATHCAD TEMPLATE IS MORE CONSERVATIVE. BOTH RESULTS ARE CONSIDERED REASONABLE.


COMPARE FEA TO MCAD RESULTS FOR 12 ft. x 15.33 ft.


			MOMENT ft. /ft.)
	<u>FEA</u>	MCAD	%DIFF.
MX	757	859	12%
MY	617	703	14%
DEFLECTION ⁺ (in)	0.033	.079⁺	same order of magnitude

⁺ USING METHOD IN ROARK'S FORMULAS FOR STRESS AND STRAIN 6th Ed., TABLE 26, CASE 8a.

EDGE REACTIONS (FOR CURRENT a & b)

- REACTIONS ARE PLOTTED FOR EACH PLATE AXIS x and y.
- MOMENTS ARE COMPUTED AT THE CENTER SPAN FOR A SIMPLE BEAM (FOR USE IF **USING INTERMEDIATE BEAM** SUPPORTS AFTER SLAB IS LIFTED)

SHEAR CHECK

Check Slab for Edge Shear

$$R_{uX_max} = 733 \frac{lbf}{ft}$$

$$R_{uY_max} = 686 \frac{lbf}{ft}$$
 $\phi_v := 0.85$

$$R_{uY_max} = 686 \frac{1bf}{ft}$$

$$\phi_{V} := 0.85$$

$$d_{reinf} x = 2.07 \cdot ir$$

$$d_{reinf_x} = 2.07 \cdot in$$
 $d_{reinf_y} = 1.93 \cdot in$

$$v_{cx} := \frac{R_{uX_max}}{d_{reinf_x}}$$

$$v_{cy} := \frac{R_{uY_max}}{d_{reinf_y}}$$

$$v_{cx} = 30 psi$$

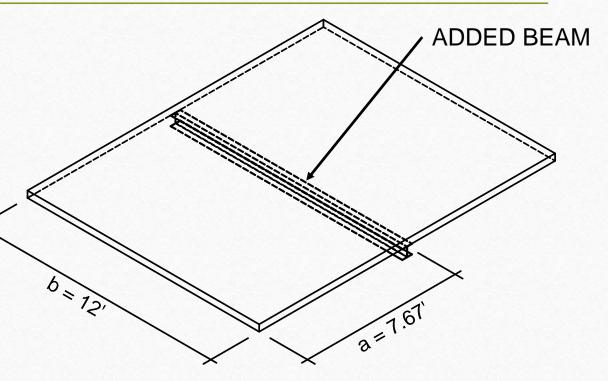
$$v_{cx} = 30 psi$$

Ultimate Shear Strength is one half of ultimate for no shear reinforcing

$$v_{\mathbf{u}} := \phi_{\mathbf{v}} \cdot 2 \sqrt{\frac{\mathbf{f}_{\mathbf{c}}}{\mathbf{p} \mathbf{s} \mathbf{i}}} \cdot \mathbf{p} \mathbf{s} \mathbf{i} \div 2$$
 $v_{\mathbf{u}} = 47 \, \mathbf{p} \mathbf{s} \mathbf{i}$

$$v_u = 47 psi$$

MOMENTS AND SHEARS FOR AN INTERMEDIATE STEEL BEAM


 VALUES SHOWN ARE FOR CURRENT VALUES OF a & b.

• a = 12', b = 15.33'

 TO ADD ONE BEAM IN SHORT DIRECTION, NEW DIMENSIONS ARE:

$$a = 7.67', b = 12'$$

 LOAD IS DOUBLED FOR LOAD FROM BOTH SIDES.

INTERMEDIATE STEEL BEAM

Moment in Short direction for intermediate steel beam

$$V_{X LL} = 1.1 \cdot kip$$

$$V_{X_DL} = 1.4 \cdot \text{kip}$$
 $V_{X_LL} = 1.1 \cdot \text{kip}$ $V_{X_tot} = 2.5 \cdot \text{kip}$

$$M_{X LL} = 2.8 \cdot \text{kip} \cdot \text{f}$$

$$M_{X_DL} = 3.6 \cdot \text{kip} \cdot \text{ft}$$
 $M_{X_LL} = 2.8 \cdot \text{kip} \cdot \text{ft}$ $M_{X_tot} = 6.4 \cdot \text{kip} \cdot \text{ft}$

Moment in Long direction for intermediate steel beam

$$V_{Y DL} = 1.1 \cdot kig$$

$$V_{Y LL} = 0.9 \cdot kir$$

$$V_{Y_DL} = 1.1 \cdot kip$$
 $V_{Y_LL} = 0.9 \cdot kip$ $V_{Y_tot} = 1.9 \cdot kip$

$$M_{YDL} = 2.2 \cdot \text{kip} \cdot \text{ft}$$

$$M_{Y LL} = 1.8 \cdot kip \cdot f$$

$$M_{Y_DL} = 2.2 \cdot \text{kip} \cdot \text{ft}$$
 $M_{Y_LL} = 1.8 \cdot \text{kip} \cdot \text{ft}$ $M_{Y_tot} = 4 \cdot \text{kip} \cdot \text{ft}$

$$a = 12 \cdot ft$$

$$f_{all} := 30ksi$$
 $S_{req} := \frac{2M_{X_tot}}{f_{all}}$

Double Section Modulus for load for both sides

$$S_{req} = 5.121 \cdot in^3$$

The user must exorcize care when using this method based on how many subdivisions a particular flat plate has.

- **GEOMETRY**
- CLEAR SPANS a & b (TYPICALLY FEET., ANY UNIT SYSTEM IS OK)
- SLAB THICKNESS (TYPICALLY INCHES, ANY UNIT IS OK)

Geometry: Reinforced Option

Unit width

$$b_w := 12 \cdot in$$

See table at right for wire mesh sizes and yield stress

Thickness Slab

h := 4inDia Bar actual

Cover Depth from top

$$d_{cov} := 2in$$

Spa Bar

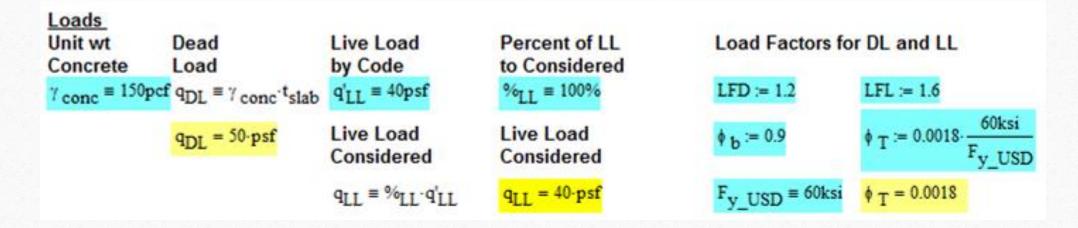
Area

$$\mathbf{Bar}_{\mathbf{b}} := \pi \cdot \mathbf{d_b}^2 + 4$$

$$A_b = 0.0141 \cdot in^2$$

Cover Depth from top for **USD Method**

Dia Bar for USD


$$d_b' := 0.375in$$

used to design slab by USD method

$$no_b := \frac{d'_b}{0.125in}$$

$$no_b = 3$$

 ENTER LIVE LOAD, PERCENT OF LIVE LOAD, AND LOAD FACTORS FOR USD.

• A CHECK FOR VALID DIMENSIONS IS PROVIDED, b <u>MUST</u> BE GREATER THAN OR EQUAL TO a.

$$\frac{\text{Check for Valid Method}}{\text{Check}_{method} \equiv \text{if} \left(a'_b \leq 1 \land a'_b \geq \frac{3}{8}, \text{"Valid" , "Not Valid"} \right)}$$

$$\frac{\text{Check}_{method} \equiv \text{"Valid"}}{\text{Check}_{method} \equiv \text{"Valid"}}$$

SHEET GIVES ERROR IF a > b.

Post Tensioned Option (slab only)

Post Tensioned No. cables Cable Cables Force per plate lengths a & b

$$spa_{cable_X} \equiv 5.0 \text{ft No}_X = 3.07$$

$$P_{PT} := 26.7 \text{kip}$$

$$spa_{cable_Y} \equiv 5.0 \text{ft No}_Y = 2.4$$

Section Modulus

$$S_s := \frac{t_{slab}^2}{6}$$

$$S_s = 32.0 \cdot \frac{in^3}{\Omega}$$

Note: to compute effective presstress including beam, use Added Prestress Section at right. Enter cable dist for top, usually

Prestressed Reinforcing Option (slab and beam

Beam width

Beam Depth

Cable Force

No. Beam Cables

$$b_{bm} \equiv 12in$$
 $d_{bm} \equiv 24in$

$$P_{PS} := 26.7 \text{kip}$$

$$N_{bcx} := 2$$

$$spa_{ps_X} \equiv 5.0 \text{ft} \quad No_{Xps} = 3.07$$

$$No_{Xps} = 3.0$$

$$spa_{ps_Y} \equiv 5.0 \text{ft} \quad No_{Yps} = 2.4$$

$$No_{Yps} = 2.4$$

$$cov_{ps} \equiv 3in$$

Prestress Cable Location from Top

Typ slab strand position for PT option

Refer to NAts dimensions below for top strand location

$$y_{pstx} := 6in$$

$$y_{psty} := 7in$$

$$\frac{t_{slab}}{2} = 2 in$$

NA for Tee beam in X and Y directions

 $NA_{t x} = 4.81 \cdot in$ $NA_{t y} = 5.33 \cdot in$

Material Properties

Yield Strength

$$F_v = 65 \cdot ksi$$

Modulus Steel

$$E_{steel} = 29000 \cdot ksi$$
 $f_c = 3 \cdot ksi$

Concrete Strength

$$f_c \equiv 3 \cdot ksi$$

Modular Ratio

$$n_r := 9$$

Allowable Tension in concrete

$$\mathbf{f_{t_all}} := -\left(6 \cdot \sqrt{\frac{\mathbf{f_c}}{psi}} \cdot psi\right) \quad \mathbf{f_{t_all}} = -329 \cdot psi$$

REINFORCING

AREA OF STEEL FURNISHED FOR WELDED WIRE MESH (WWM)

TABLE 1	Common 3 Styles of Metric Welded Wire Reinforcement (WWR)
(Pavisad)	With Equivalent US Customery Units

(Revise	ed)	With Equivalent US Customary Units								
	Equivalent US	A	Wt	Ą	Metric System	Wt.				
	Customary Style	(in ² /ft)	(lbs/CSF)	(mm ² /m)	(MW = Plain wire) ¹	(kg/m²)				
A ^{1&4}	4x4 W1.4xW1.4	.042	31	88.9	102x102 - MW9xMW9	1.51				
	4x4 - W2.0xW2.0	.060	44	127.0	102x102 - MW13xMW13	2.15				
	4x4 - W2.9xW2.9	.087	62	184.2	102x102 - MW19xMW19	3.03				
	4x4 - W4.0xW4.0	.120	88	254.0	102x102 - MW26xMW26	4.30				
	6x6 - W1.4xW1.4	.028	21	59.3	152x152 - MW9xMW9	1.03				
	6x6 - W2.0xW2.0	.040	30	84.7	152x152 - MW13xMW13	1.46				
	6x6 - W2.9xW2.9	.058	42	122.8	152x152 - MW19xMW19	2.05				
	6x6 - W4.0xW4.0	.080	58	169.4	152x152 - MW26xMW26	2.83				
_B 1	4x4 - W3.1xW3.1	.093	65	196.9	102x102 - MW20xMW20	3.17				
	6x6 - W4.7xW4.7	.094	68	199.0	152x152- MW30xMW30	3.32				
	12x12 - W9.4xW9.4	.094	71	199.0	305x305 - MW61xMW61	3.47				
	12x12 - W17.1xW17.1	.171	128	362.0	305x305 - MW110xMW110	6.25				
	6x6 - W8.1xW8.1	.162	116	342.9	102x102 - MW52xMW52	5.66				
	6x6 -W8.3xW8.3	.166	119	351.4	152x152 - MW54xMW54	5.81				
C ¹	12x12 - W9.1xW9.1	.091	69	192.6	305x305 - MW59xMW59	8.25				
•	12x12 - W16.6xW16.6	.166	125	351.4	305x305 - MW107xMW107	9.72				
D ¹	6x6 - W4.4xW4.4	.088	63	186.3	102x102 - MW28xMW28	3.22				
	6x6 -W8xW8	.160	115	338.7	152x152 - MW52xMW52	5.61				
	12x12 - W8.8xW8.8	.088	66	186.3	305x305 - MW57xMW75	3.22				
	12x12 - W16xW16	.160	120	338.7	305x305 - MW103xMW103	5.61				
	6x6 - W4.2xW4.2	.084	60	177.8	102x102 - MW27xMW27	3.08				
	6x6 -W7.5xW7.5	.150	108	317.5	152x152 - MW48xMW48	5.52				
-1	12x12 - W8.3xW8.3	083	63	175.7	305x305 - MW54xMW54	3.08				
E ¹	12x12 - W15xW15	.150	113	317.5	305x305 - MW97xMW97	5.52				

¹ Group A – Compares areas of WWR at a minimum f_y = 65,000 psi
Group B – Compares areas of WWR at a minimum f_y = 70,000 psi
Group C – Compares areas of WWR at a minimum f_y = 80,000 psi
Group C – Compares areas of WWR at a minimum f_y = 72,500 psi

Wires may also be deformed, use prefix MD or D, except where only MW or W is required by building codes (usually less than a ... MW26 or W4).
Also wire sizes can be specified in 1 mm² (metric) or .001 in (US Customary) increments.

³ For other available styles or wire sizes, consult other WRI publications or discuss with WWR manufacturers.

⁴ Styles may be obtained in roll form. Note: It is recommended that rolls be flattened and cut to size before placement.

REINFORCING

 COMPUTE BAR DIAMETER OF WELDED WIRE MESH FROM A_S PER FOOT IN WELDED WIRE MESH.

For Wire Mesh

Area per foot = 0.028 in^2 for $6 \times 6 \cdot 1.4 \times 1.4$. Thus the area of one bar is $0.028 \cdot 6 \text{in} / 12 \text{in} = 0.014 \text{in}^2$

The diameter of othe bar is then

Dia Bar =
$$\sqrt{\frac{0.014 \text{in}^2 \cdot 4}{\pi}} = 0.134 \cdot \text{in} \qquad \text{for } 6 \times 6 \cdot 1.4 \times 1.4$$

The yield Strength for this bar is 65 ksi for Group 1.

STRUCTURAL PLAIN CONCRETE (SPC)

- 22.2.1 Use of structural plain concrete shall be limited to (a), (b), or (c):
 - (a) Members that are continuously supported by soil or supported by other structural members capable of providing continuous vertical support;
 - (b) Members for which arch action provides compression under all conditions of loading;
 - (c) Walls and pedestals. See 22.6 and 22.8.

The use of structural plain concrete columns shall not be permitted.

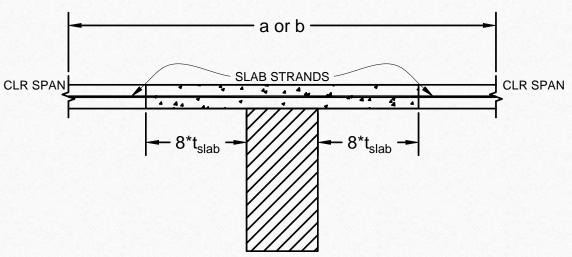
22.2.2 — This chapter shall not govern design and installation of cast-in-place concrete piles and piers embedded in ground.

- FROM ACI 318
- ELEVATED SLABS ARE <u>NOT</u> INCLUDED IN SPC.

POST TENSIONED REINFORCING

• FOR TEE BEAMS,

EFFECTIVE WIDTH EACH


SIDE & BEAM IS TAKEN AS

8*t_{SLAB}. SO, PAST THE

EFFECTIVE WIDTH OF TEE,

SLAB BENDS ABOUT IT'S

OWN NEUTRAL AXIS.

POST TENSIONED REINFORCING

- THUS ONLY SLAB STRANDS ARE CONSIDERED IN COMPUTING SLAB STRESS.
- TO CONSIDER EFFECT OF BEAM USE ADDED PRESTRESS IN NEXT SECTION.

Post Tensioned Option (slab only)

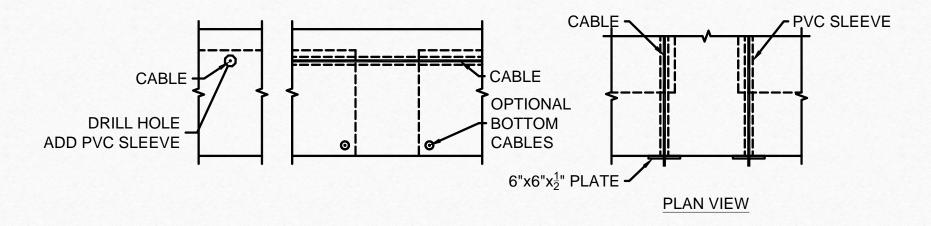
Post Tensioned No. cables Cable Cables per plate lengths a & b

$$spa_{cable_X} = 5.0 \text{ft No}_X = 3.07$$

$$P_{PT} := 26.7 \text{kip}$$

$$spa_{cable_Y} \equiv 5.0 \text{ft No}_Y = 2.4$$

Section Modulus


$$S_s := \frac{t_{slab}^2}{6}$$

$$S_s = 32.0 \cdot \frac{in^3}{ft}$$

Note: to compute effective presstress including beam, use Added Prestress Section at right. Enter cable dist for top, usually

PRE-STRESSED OPTION

 SINCE NEW CABLES CAN BE ADDED THE TEE BEAM IS CONSIDERED EFFECTIVE.

PRESTRESSED OPTION

IF POSSIBLE KEEP SLAB CABLES ABOVE NEUTRAL AXIS (NA) OF COMBINED NEUTRAL AXIS OR AS CLOSE TO NEUTRAL AXIS AS POSSIBLE.

> $spa_{ps} Y \equiv 5.0 \text{ft} \text{ No}_{Yps} = 2.4$ $cov_{ps} \equiv 3in$ Prestress Cable Location from Top

Prestressed Reinforcing Option (slab and beam

Cable Force

Pps := 26.7kip

Cover PT

in beam

Beam Depth

 $d_{bm} \equiv 24in$

Refer to NAts dimensions below for top strand location $y_{psty} := 7in$

 $spa_{ps} X \equiv 5.0 \text{ft} No_{Xps} = 3.07$

$$y_{pstx} := 6in$$

Beam width

 $b_{bm} \equiv 12in$

Typ slab strand position for PT option

No. Beam

Cables

 $N_{bcx} := 2$

 $N_{bcy} := 2$

$$\frac{\tau_{\text{slab}}}{2} = 2 \text{ in}$$

NA for Tee beam in X and Y directions

$$NA_{t x} = 4.81 \cdot i$$

$$NA_{t v} = 5.33 \cdot ir$$

RESULTS

ANALYSIS RESULTS ARE SUPPLIED FOR <u>DEAD LOAD</u> AND <u>TOTAL LOAD</u> FOR:

- 1. RESULTANT <u>MOMENTS</u> ACROSS THE SLAB (LIVE LOAD MAY BE FACTORED UP OR DOWN).
- 2. CONCRETE STRESS USING FULL UNCRACKED SECTION SHOWN FOR REFERENCE ONLY.
- 3. STRESS IN EXISTING REINFORCING (WSD) FOR CRACKED SECTION.
- 4. POST TENSIONED STRESS IN EXISTING REINFORCING FOR CRACKED SECTION (STRESS IN TOP OF SLAB).

WSD: WORKING STRESS DESIGN

RESULTS

RESULTS ARE SUPPLIED FOR <u>DEAD LOAD</u> AND <u>TOTAL LOAD</u> FOR:

- 5. ADDED PRESTRESSING STRESS IN CONCRETE (STRESS IN TOP OF SLAB).
- 6. ULTIMATE STRENGTH DESIGN $-A_S$ REQUIRED AND BAR SPACING (FOR SPECIFIED BAR DIAMETER).
- 7. RESULTS FOR INTERMEDIATE PIER (EXAMPLE).

APPLIED MOMENTS

- SHADING IS USED TO DIFFERENTIATE POSITIVE AND NEGATIVE MOMENTS.
- DEAD LOAD

DL Moment X Direction (lbf ft/ft)

Green Shade: Negative Moment; Orange Shade: Positive Moment

	0.0'	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'
0.0	0	-28	-94	-255	-379	-453	-477	-453	-379	-255	-94	-28	0
0.6'	-4	-23	-60	-159	-243	-297	-315	-297	-243	-159	-60	-23	-4
1.2'	-12	-17	-33	-84	-135	-168	-180	-168	-135	-84	-33	-17	-12
2.4'	-36	-17	-2	14	17	16	15	16	17	14	-2	-17	-36
3.6'	-59	-24	10	68	108	130	137	130	108	68	10	-24	-59
4.8'	-73	-30	14	95	155	190	202	190	155	95	14	-30	-73
6.0'	-78	-33	15	103	169	210	223	210	169	103	15	-33	-78
7.2'	-73	-30	14	95	155	190	202	190	155	95	14	-30	-73
8.4'	-59	-24	10	68	108	130	137	130	108	68	10	-24	-59
9.6'	-36	-17	-2	14	17	16	15	16	17	14	-2	-17	-36
10.8'	-12	-17	-33	-84	-135	-168	-180	-168	-135	-84	-33	-17	-12
11.4'	-4	-23	-60	-159	-243	-297	-315	-297	-243	-159	-60	-23	-4
12.0'	0	-28	-94	-255	-379	-453	-477	-453	-379	-255	-94	-28	0

DL Moment Y Direction (lbf ft/ft)

Green Shade: Negative Moment; Orange Shade: Positive Moment

	0.0'	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'
0.0	0	-6	-19	-51	-76	-91	-95	-91	-76	-51	-19	-6	0
0.6'	-17	-15	-15	-29	-45	-56	-59	-56	-45	-29	-15	-15	-17
1.2'	-60	-35	-18	-9	-15	-21	-24	-21	-15	-9	-18	-35	-60
2.4'	-182	-96	-36	22	40	43	43	43	40	22	-36	-96	-182
3.6'	-293	-155	-59	43	82	94	96	94	82	43	-59	-155	-293
4.8'	-366	-197	-78	53	108	121	130	121	108	53	-78	-197	-366
6.0'	-391	-212	-84	57	116	137	142	137	116	57	-84	-212	-391
7.2'	-366	-197	-78	53	108	121	130	121	108	53	-78	-197	-366
8.4'	-293	-155	-59	43	82	94	96	94	82	43	-59	-155	-293
9.6'	-182	-96	-36	22	40	43	43	43	40	22	-36	-96	-182
10.8'	-60	-35	-18	-9	-15	-21	-24	-21	-15	-9	-18	-35	-60
11.4'	-17	-15	-15	-29	-45	-56	-59	-56	-45	-29	-15	-15	-17
12.0'	0	-6	-19	-51	-76	-91	-95	-91	-76	-51	-19	-6	0

APPLIED MOMENTS

TOTAL LOAD

Total Load Moment X Direction (lbf ft/ft)

Green Shade: Negative Moment; Orange Shade: Positive Moment

	0.0'	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'
0.0'	0	-51	-169	-458	-682	-815	-858	-815	-682	-458	-169	-51	0
0.6'	-6	-41	-108	-286	-438	-534	-567	-534	-438	-286	-108	-41	-6
1.2'	-22	-30	-59	-151	-242	-303	-324	-303	-242	-151	-59	-30	-22
2.4'	-66	-30	-3	25	31	29	27	29	31	25	-3	-30	-66
3.6'	-106	-42	18	123	194	233	246	233	194	123	18	-42	-106
4.8'	-131	-54	25	171	279	343	364	343	279	171	25	-54	-131
6.0'	-140	-59	26	186	305	378	401	378	305	186	26	-59	-140
7.2'	-131	-54	25	171	279	343	364	343	279	171	25	-54	-131
8.4'	-106	-42	18	123	194	233	246	233	194	123	18	-42	-106
9.6'	-66	-30	-3	25	31	29	27	29	31	25	-3	-30	-66
10.8'	-22	-30	-59	-151	-242	-303	-324	-303	-242	-151	-59	-30	-22
11.4'	-6	-41	-108	-286	-438	-534	-567	-534	-438	-286	-108	-41	-6
12.01	0	-51	-169	-458	-682	-815	-858	-815	-682	-458	-169	-51	0

Total Load Moment Y Direction (lbf ft/ft)

Green Shade: Negative Moment; Orange Shade: Positive Moment

	0.0'	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'
0.0'	0	-89	-292	-794	-1182	-1413	-1488	-1413	-1182	-794	-292	-89	0
0.6'	-31	-84	-190	-492	-755	-921	-978	-921	-755	-492	-190	-84	-31
1.2'	-107	-91	-116	-253	-406	-510	-547	-510	-406	-253	-116	-91	-107
2.4'	-324	-162	-48	66	98	99	96	99	98	66	-48	-162	-324
3.6'	-521	-254	-42	247	408	486	510	486	408	247	-42	-254	-521
4.8'	-649	-323	-53	338	575	693	739	693	575	338	-53	-323	-649
6.0'	-694	-349	-59	365	627	769	812	769	627	365	-59	-349	-694
7.2'	-649	-323	-53	338	575	693	739	693	575	338	-53	-323	-649
8.4'	-521	-254	-42	247	408	486	510	486	408	247	-42	-254	-521
9.6'	-324	-162	-48	66	98	99	96	99	98	66	-48	-162	-324
10.8'	-107	-91	-116	-253	-406	-510	-547	-510	-406	-253	-116	-91	-107
11.4'	-31	-84	-190	-492	-755	-921	-978	-921	-755	-492	-190	-84	-31
12.0'	0	-89	-292	-794	-1182	-1413	-1488	-1413	-1182	-794	-292	-89	0

UNCRACKED SECTION CONCRETE STRESS (TOP)

(STRUCTURAL PLAIN CONCRETE (SPC) - REFERENCE ONLY)

Allowable Tensile Stress f_{t all} = -329 psi **Unreinforced Structural Concrete** Percent of Tensile Strength of Concrete Percent of Tensile Strength of Concrete Total Load Dead Load $b = 15.33 \cdot ft$ $b = 15.33 \cdot ft$ 0.0' 0.8' 1.5' 3.1' 4.6' 6.1' 7.7' 9.2' 10.7' 12.3' 13.8' 14.6' 15.3' 0.0' 0.8' 1.5' 3.1' 4.6' 6.1' 7.7' 9.2' 10.7' 12.3' 13.8' 14.6' 15.3' 6% 19% 52% 78% 93% 98% 93% 78% 52% 19% 6% 11% 29% 43% 52% 54% 52% 43% 4% 5% 12% 33% 50% 61% 65% 61% 50% 33% 12% 5% a = 12-ft 6.0' 80% 44% 17% 21% 35% 43% 46% 43% 35% 21% 17% 44% 80% 75% 41% 16% 20% 32% 39% 42% 39% 32% 20% 16% 41% 75% 7% 17% 28% 35% 37% 35% 28% 17% 7% 4% 5% 12% 33% 50% 61% 65% 61% 50% 33% 12% 5% 4% 7% 18% 28% 34% 36% 34% 28% 0% 6% 19% 52% 78% 93% 98% 93% 78% 52% 19% 6% 0% 0% 3% 11% 29% 43% 52% 54% 52% 43% 29% 11% 3%

NOTE: STRESS VERY CLOSE TO TENSILE STRENGTH

CHECK TENSILE STRESS IN REINFORCING – CRACKED SECTION

- CRACKED SECTION:
 - PRIOR TO CRACKING ALL STRESS IS TAKEN BY THE CONCRETE.
 - ONCE THE CONCRETE CRACKS THE TENSILE REINFORCING BECOMES EFFECTIVE IN RESISTING BENDING.
- SHADING OF RESULTS SHOWN:
 - RED FONT/PINK SHADE FOR f_s = >F_y
 - BROWN FONT/ YELLOW SHADE FOR f_s > F_{all}
 - BLACK FONT/ NO SHADE FOR f_s ≤ F_{all}

CHECK TENSILE STRESS IN REINFORCING – CRACKED SECTION

(MAX STRESS IN REINFORCING FOR M_X OR M_Y IS REPORTED <u>FOR WWM</u>)

															Total Load														
Dead Load						b =	= 15.33	-ft							Stress in ksi						ь	= 15.3	33-ft						
Stress in ksi		0.0	0.8	1.5	3.1	4.6	6.1	7.7	9.2	10.7	12.3	13.8	14.6	15.3			0.0	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'
	0.0'	0	6	20	55	65	65	65	65	65	55	20	6	0		0.0	0	11	36	65	65	65	65	65	65	65	36	11	0
	0.6'	4	5	13	34	52	64	65	64	52	34	13	5	4		0.6'	7	9	23	62	65	65	65	65	65	62	23	9	7
	1.2'	14	8	7	18	29	36	39	36	29	18	7	8	14		1.2'	25	15	13	33	52	65	65	65	52	33	13	15	25
	2.4'	42	22	8	5	9	9	9	9	9	5	8	22	42		2.4'	65	40	15	9	16	17	17	17	16	9	15	40	65
	3.6'	65	36	14	16	25	30	32	30	25	16	14	36	65		3.6'	65	64	24	28	45	54	57	54	45	28	24	64	65
	4.8'	65	46	18	22	36	44	47	44	36	22	18	46	65	$a = 12 \cdot ft$	4.8'	65	65	32	40	64	65	65	65	64	40	32	65	65
a = 12-ft	6.0'	65	49	19	24	39	48	51	48	39	24	19	49	65		6.0'	65	65	35	43	65	65	65	65	65	43	35	65	65
	7.2'	65	46	18	22	36	44	47	44	36	22	18	46	65		7.2'	65	65	32	40	64	65	65	65	64	40	32	65	65
	8.4'	65	36	14	16	25	30	32	30	25	16	14	36	65		8.4'	65	64	24	28	45	54	57	54	45	28	24	64	65
	9.6'	42	22	8	5	9	9	9	9	9	5	8	22	42		9.6'	65	40	15	9	16	17	17	17	16	9	15	40	65
	10.8'	14	8	7	18	29	36	39	36	29	18	7	8	14		10.8'	25	15	13	33	52	65	65	65	52	33	13	15	25
	11.4'	4	5	13	34	52	64	65	64	52	34	13	5	4		11.4'	7	9	23	62	65	65	65	65	65	62	23	9	7
	12.0'	0	6	20	55	65	65	65	65	65	55	20	6	0		12.0'	0	11	36	65	65	65	65	65	65	65	36	11	0

POST TENSIONED RESULTS

- RESULTS ARE PROVIDED FOR TOP STRESS IN SLAB.
- STRESS IS CHECKED AGAINST ALLOWABLE CONCRETE TENSILE STRESS.
- BOTTOM OF SLAB STRESS CAN BE REPORTED.

POST-TENSIONED RESULTS STRESS IN TOP OF SLAB

(MAXIMUM NEGATIVE TENSION IS SHOWN FOR EACH DIRECTION x OR y)

Dead Load								- 22 0																					
Concrete st	tress in	top o	fslab	(psi)			b = 15).55-π							Total Loa	<u>ad</u>					b	= 15.3	33-ft						
		0.0	0.81	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'			0.0'	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'
	0.0	87	85	76	16	-31	-59	-68	-59	-31	16	76	85	87		0.0'	87	83	48	-61	-145	-194	-211	-194	-145	-61	48	83	87
	0.6'	81	81	82	52	20	0	-7	0	20	52	82	81	81		0.6'	75	77	71	4	-53	-89	-101	-89	-53	4	71	77	75
	1.2'	65	74	81	80	61	48	44	48	61	80	81	74	65		1.2'	47	63	75	54	20	-2	-10	-2	20	54	75	63	47
	2.4'	19	51	74	95	102	103	103	103	102	95	74	51	19		2.4'	-36	23	63	102	114	116	116	116	114	102	63	23	-36
	3.6'	-23	29	65	103	118	122	123	122	118	103	65	29	-23		3.6'	-111	-18	47	116	142	150	152	150	142	116	47	-18	-111
	4.8'	-50	13	58	107	127	132	136	132	127	107	58	13	-50		4.8'	-160	-46	35	123	160	169	175	169	160	123	35	-46	-160
$a = 12 \cdot ft$	6.0'	-59	8	55	108	131	138	140	138	131	108	55	8	-59	$a = 12 \cdot ft$	6.0'	-177	-56	30	125	166	180	183	180	166	125	30	-56	-177
	7.2'	-50	13	58	107	127	132	136	132	127	107	58	13	-50		7.21	-160	-46	35	123	160	169	175	169	160	123	35	-46	-160
	8.4'	-23	29	65	103	118	122	123	122	118	103	65	29	-23		8.4'	-111	-18	47	116	142	150	152	150	142	116	47	-18	-111
	9.6'	19	51	74	95	102	103	103	103	102	95	74	51	19		9.6'	-36	23	63	102	114	116	116	116	114	102	63	23	-36
	10.8'	65	74	81	80	61	48	44	48	61	80	81	74	65		10.8'	47	63	75	54	20	-2	-10	-2	20	54	75	63	47
	11.4'	81	81	82	52	20	0	-7	0	20	52	82	81	81		11.4'	75	77	71	4	-53	-89	-101	-89	-53	4	71	77	75
	12.0'	87	85	76	16	-31	-59	-68	-59	-31	16	76	85	87		12.0'	87	83	48	-61	-145	-194	-211	-194	-145	-61	48	83	87

MIN. PT STRESS = 100psi FOR TEMPERATURE REINFORCING AND 125psi FOR TWO WAY SLABS.

www.clark-engineers.com jmc@clark-engineers.com 936-273-6200

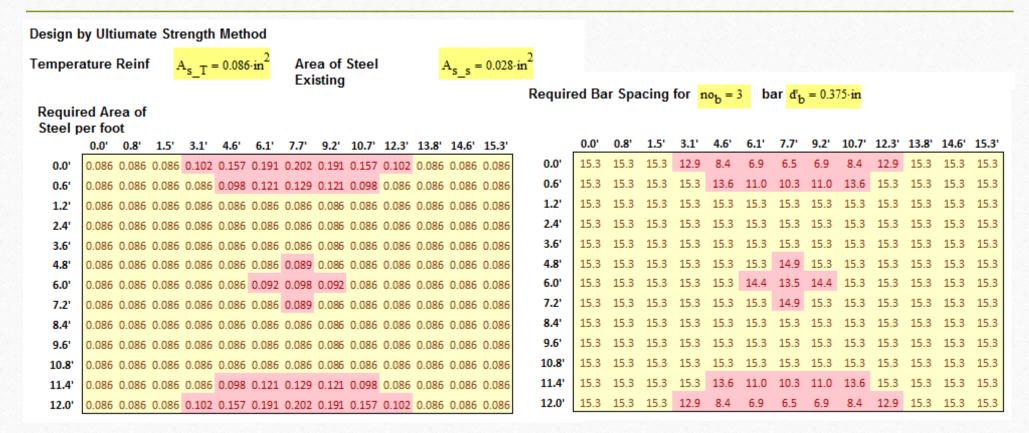
ADDED PRESTRESSING RESULTS

- RESULTS ARE PROVIDED FOR TOP STRESS IN SLAB. STRESS IS CHECKED AGAINST ALLOWABLE TENSILE STRESS.
- BOTTOM OF SLAB STRESS IS CALCULATED AND CAN BE REPORTED IF NEEDED.

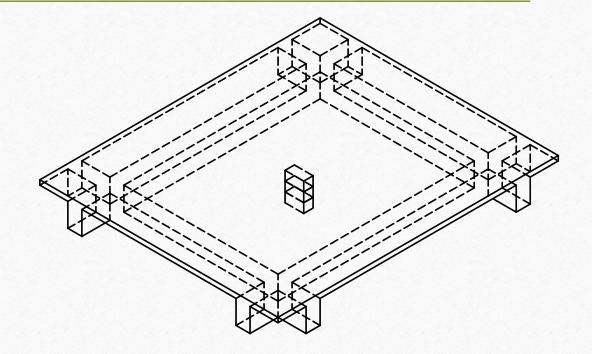
ADDED PRESTRESSING RESULTS IN TOP OF SLAB

(MAXIMUM NEGATIVE TENSION IS SHOWN FOR EACH DIRECTION x OR y)

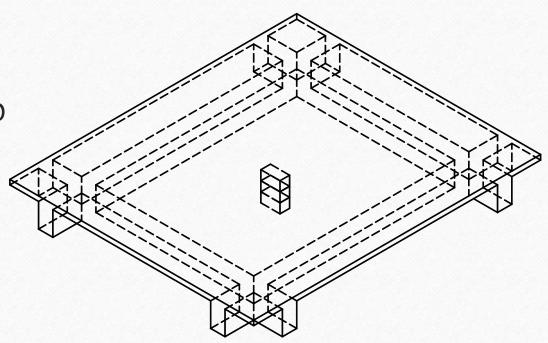
<u>Dead Load</u> Concrete stres	s in to	p of	slab			b	= 15.3	3-ft						Total Load							b = 15	5.33-ft						
	0.0	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'			0.0	0.81	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'
0.0'	60	62	67	79	88	94	95	94	88	79	67	62	60		0.0	60	64	72	94	111	121	124	121	111	94	72	64	60
0.6'	66	65	65	70	77	81	82	81	77	70	65	65	66		0.6'	69	70	70	79	90	97	100	97	90	79	70	70	69
1.2'	71	73	66	63	65	68	69	68	65	63	66	73	71		1.2'	75	78	72	66	70	74	76	74	70	66	72	78	75
2.4'	80	73	67	51	45	43	44	43	45	51	67	73	80		2.4'	91	78	68	45	33	30	31	30	33	45	68	78	91
3.6'	89	76	63	41	26	18	15	18	26	41	63	76	89		3.6'	106	83	60	21	-6	-21	-26	-21	-6	21	60	83	106
4.8'	94	78	62	31	9	-5	-9	-5	9	31	62	78	94		4.8'	116	87	57	3	-38	-62	-70	-62	-38	3	57	87	116
a = 12·ft 6.0°	96	79	61	28	3	-12	-17	-12	3	28	61	79	96	$a = 12 \cdot ft$	6.01	119	89	57	-3	-48	-75	-84	-75	-48	-3	57	89	119
7.2'	94	78	62	31	9	-5	-9	-5	9	31	62	78	94		7.2'	116	87	57	3	-38	-62	-70	-62	-38	3	57	87	116
8.4'	89	76	63	41	26	18	15	18	26	41	63	76	89		8.4'	106	83	60	21	-6	-21	-26	-21	-6	21	60	83	106
9.6'	80	73	67	51	45	43	44	43	45	51	67	73	80		9.6'	91	78	68	45	33	30	31	30	33	45	68	78	91
10.8'	71	73	66	63	65	68	69	68	65	63	66	73	71		10.8	75	78	72	66	70	74	76	74	70	66	72	78	75
11.4'	66	65	65	70	77	81	82	81	77	70	65	65	66		11.4'	69	70	70	79	90	97	100	97	90	79	70	70	69
12.0'	60	62	67	79	88	94	95	94	88	79	67	62	60		12.0'	60	64	72	94	111	121	124	121	111	94	72	64	60

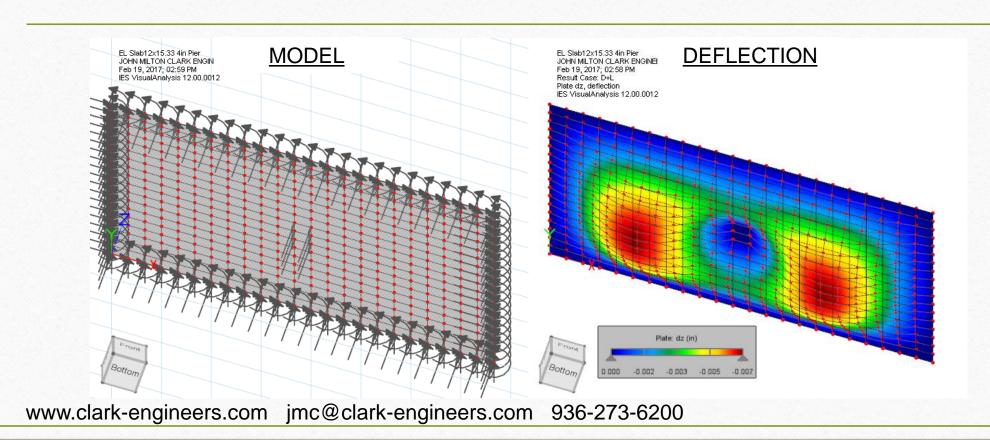

MIN. PT STRESS = 100psi FOR TEMPERATURE REINFORCING AND 125psi FOR TWO WAY SLABS.

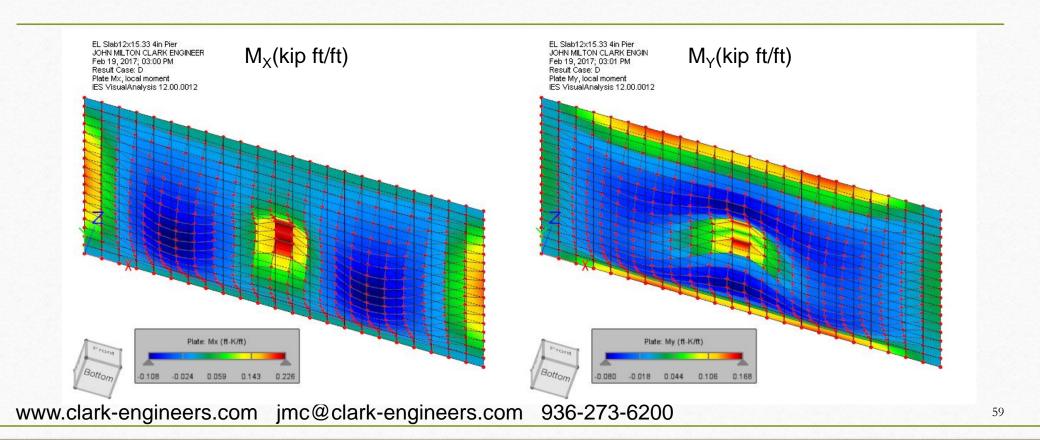
www.clark-engineers.com jmc@clark-engineers.com 936-273-6200

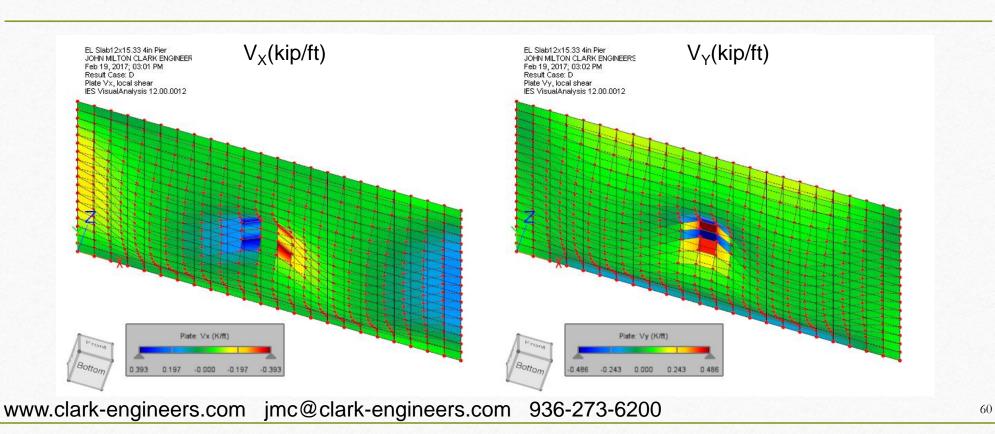

DESIGN OF REINFORCING USING USD METHOD

- AS A CHECK, THE REINFORCING IS DESIGNED USING USD METHOD.
- LOAD FACTORS
 - $LF_{DI} = 1.2$ $LF_{II} = 1.6$
 - $\varnothing_{\rm b} = 0.9$
 - $\mathcal{O}_{T} = .00188(60/F_{v})$
- AREA REINFORCING REQUIRED INCLUDES TEMPERATURE REINFORCING.
- USD CHECK HAS SEPARATE BAR COVER DEPTH INPUT.
- USD % ULTIMATE STRENGTH DESIGN.


USD RESULTS


- INTERMEDIATE PIERS
 - THERE ARE NO PUBLISHED NUMERICAL METHODS FOR INTERMEDIATE PIERS FOR PLATES WITH FIXED EDGES.




- INTERMEDIATE PIERS ON SLABS WITHOUT BEAMS.
 - MUST USE FEA OR SIMPLIFIED METHOD TO ANALYZE (???).
 - EXISTING REINFORCING WILL IN GENERAL NOT BE SUFFICIENT FOR INTERMEDIATE PIERS.

FEA EXAMPLE: a = 12' b = 15.33' PIER IN CENTER

UNCRACKED STRESS RESULTS

Stress Results for FEA with 8 x 16 pier at center Example Uncracked Section

Moment

$$M_{xp} := \frac{0.453 \text{kip} \cdot \text{ft}}{\text{ft}}$$

$$M_{yp} := \frac{0.336 \text{kip} \cdot \text{ft}}{\text{ft}}$$

Bending Stress

$$pier := \frac{M_{xp}}{S_{slab}}$$

$$f_{by_pier} := \frac{M_{yp}}{S_{slab}}$$

$$f_{bx_pier} = 170 \cdot psi$$

% Use

$$%_{tenx} := \left| \frac{f_{bx_pier}}{(f_{t_all})} \right|$$

$$%_{teny} := \frac{f_{by_pier}}{(f_{t all})}$$

Back Calculated Moment Coefficients for Pier

$$\beta_{px} = 0.2097$$

$$\beta_{py} = 0.0953$$

Let spans be 1/2 of plate dimensions

$$a_p = 6 ft$$

$$b_p = 7.665 \, ft$$

$$M'_{xp} := w_{TL} \cdot a_p^2 \cdot \frac{\beta_{px}}{ft}$$

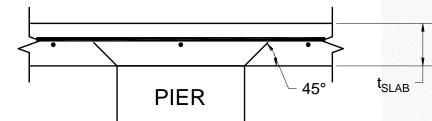
$$M_{yp} := w_{TL} \cdot b_p^2 \cdot \frac{\beta_{py}}{ft}$$

$$M_{xp} = 0.453 \frac{\text{kip-ft}}{\text{ft}}$$

$$M'_{yp} = 0.336 \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$$

- CAN ONLY BE USED FOR a/b = .783
- OTHER GEOMETRIES WILL HAVE SIMILAR VALUES

Punching Shear


t.slab

Reinforcing Depth

h = 4 in

$$|\mathbf{d'_{reinf}}|_{x} = 1.81 \text{ in}$$

$$|\mathbf{d'_{reinf_x}}| = 1.81 \text{ in}$$
 $|\mathbf{d'_{reinf_y}}| = 2.19 \text{ in}$

Shear

Shear Stress

Ult Punching Shear Stress

$$V_X := 0.786 \frac{kip}{ft}$$

$$v_{cx} := \frac{V_x \cdot \sin(45 \deg)}{h \cdot d'_{reinf} \cdot x}$$

$$v_{cx} = 87 \cdot \frac{psi}{ft}$$

$$v_{cx} := \frac{V_x \cdot \sin(45 \deg)}{h \cdot d'_{reinf \ x}} \qquad v_{cx} = 87 \cdot \frac{p \, si}{ft} \qquad v_p := 4 \cdot \sqrt{\frac{f'_c}{p \, si}} \cdot p \, si \quad \%_{vpx} := \frac{v_{cx} \cdot ft}{v_p}$$

$$%_{\rm vpx} = 40 \%$$

% Use

$$V_y := 0.971 \frac{kip}{ft}$$

$$v_{cy} := \frac{V_y \cdot \sin(45 \deg)}{h \cdot d'_{reinf} \ v} \qquad v_{cy} = 89 \cdot \frac{psi}{ft} \qquad v_p = 219 \cdot psi \qquad \%_{vpy} := \frac{v_{cy} \cdot ft}{v_p}$$

$$v_{cy} = 89 \cdot \frac{psi}{ft}$$

$$%_{\text{vpy}} := \frac{v_{\text{cy}} \cdot h}{v_{\text{p}}}$$

$$\%_{\mathrm{vpy}} = 41 \%$$

- CAN ONLY BE USED FOR a/b = .783
- OTHER GEOMETRIES WILL HAVE SIMILAR VALUES

Back Calculated Shear Coefficients for Pier

$$\alpha_{\rm X}$$
 = 2.1833

$$a_{y} = 2.1113$$

$$V'_{xp} = \alpha_x w_{TL} a_p$$
 $V'_{xp} = 0.786 kip$

$$V'_{yp} := \alpha_y w_{TL} b_p \qquad V'_{yp} =$$

$$V'_{yp} = 0.971 \text{ kip}$$

WSD CHECK

Check Steel Working Stress at Pier F_V = 65-ksi f_{all} = 26-ksi

$$F_v = 65 \cdot ksi$$

Compression in concrete

$$\begin{aligned} & Cp_{TLx} \coloneqq \text{if} \left(M_{xp} \ge 0 \,, \frac{M_{xp}}{\text{arm}_x} \cdot \text{ft} \,, \, \left| \frac{M_{xp}}{\text{arm}_x'} \right| \cdot \text{ft} \right) & Cp_{TLx} = 2.75 \, \text{kip} & Cp_{TLy} \coloneqq \text{if} \left(M_{yp} \ge 0 \,, \frac{M_{xp}}{\text{arm}_y} \cdot \text{ft} \,, \, \left| \frac{M_{xp}}{\text{arm}_y'} \right| \cdot \text{ft} \right) & Cp_{TLy} = 2.95 \, \text{kip} \\ & \text{arm}_x = 1.975 \, \text{in} & \text{arm}_y = 1.844 \, \text{in} & \text{arm}_y' = 1.975 \, \text{in} \end{aligned}$$

For equilibruinm tension in steel equals compression in concrete

Stess in Steel
$$A_{s_s} = 0.028 \text{ in}^2$$

$$f''_{spx} := \frac{Cp_{TLx}}{A_{s_s}} \qquad f''_{spx} = 98 \text{ ksi} \qquad f''_{spy} := \frac{Cp_{TLy}}{A_{s_s}} \qquad f''_{spy} = 104 \text{ ksi}$$

EXCEEDS YIELD STRESS

Set Stress equal to Yield if exceeds Yield

$$f'_{spx} := if(f''_{spx} > F_y, F_y \cdot 1.001, f''_{spx})$$

$$\mathbf{f}_{spy} := i\mathbf{f}(\mathbf{f}_{spx}') > \mathbf{f}_{y}, \mathbf{f}_{y} \cdot 1.001, \mathbf{f}_{spy}')$$

$$f_{spx} = 65 \text{ ksi}$$

$$f'_{spx} = 65 \text{ ksi}$$

$$\mathbf{f'_{spx}} \coloneqq \mathbf{if} \Big(\mathbf{f'_{spx}} > \mathbf{F_y}, \text{"at or Exceeds yld"}, \mathbf{if} \Big(\mathbf{f'_{spx}} < -\mathbf{f_{all}} \lor \ \mathbf{f'_{spx}} > \mathbf{f_{all}}, \text{"Exceeds Allowable"}, \text{"OK"} \Big) \Big)$$

$$\mathbf{f'_{spy}} \coloneqq \mathbf{if} \Big(\mathbf{f'_{spy}} > \mathbf{F_y}, \text{"at or Exceeds yld"}, \mathbf{if} \Big(\mathbf{f'_{spy}} < -\mathbf{f_{all}} \lor \ \mathbf{f'_{spy}} > \mathbf{f_{all}}, \text{"Exceeds Allowable"}, \text{"OK"} \Big) \Big)$$

USD CHECK

Ultimate Moment Supplied at pier

$$\mathbf{M_{upf}} := \frac{\phi_b \cdot \mathbf{A_{s_s}} \cdot \mathbf{F_y} \cdot \left(\mathbf{d_{reinf}} - 0.59 \cdot \frac{\mathbf{A_{s_s}} \cdot \mathbf{F_y}}{\mathbf{f_c} \cdot \mathbf{b}} \right)}{\mathbf{ft}}$$

Ultimate Moment Furnished

Ultimate Moment Required

$$M_{upf} = \begin{pmatrix} 0.275 \\ 0.301 \end{pmatrix} \frac{kip \cdot ft}{ft}$$

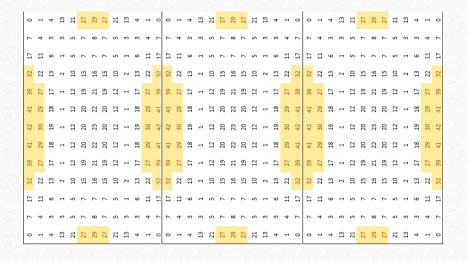
$$M_{up} = \binom{0.62}{0.46} \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$$

Percent of required Moment Supplied

$$\%M_{p_supld} := \left(\frac{M_{upf}}{M_{up}}\right)$$

$$\%M_{p_supld} = {44 \choose 65} \%$$

RECOMMENDATIONS


- ACCURATELY DETERMINE SIZE, SPACING, AND DEPTH OF SLAB REINFORCING – e.g. GPR AS WELL AS SLAB THICKNESS AND LOCATION OF GRADE BEAMS
- ITERATE ON SLAB SIZE (a & b), CHECK BY SUBDIVIDING PLATE UNTIL ALLOWABLE TENSILE STRESS IS SATISFIED.

GPR: GROUND PENETRATING RADAR

EXAMPLES OF ADDING INTERMEDIATE BEAMS

Total Load		ВА	R S	TRI	ESS	FC	DR	ΙΝΙΤ	TAL	_ PL	AT	E S	IZE	
Stress in ksi						b	= 15.3	33-ft						
		0.0	0.81	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.31
	0.0	0	11	36	65	65	65	65	65	65	65	36	11	0
	0.6'	7	9	23	62	65	65	65	65	65	62	23	9	7
	1.2'	25	15	13	33	52	65	65	65	52	33	13	15	25
	2.4'	65	40	15	9	16	17	17	17	16	9	15	40	65
	3.6'	65	64	24	28	45	54	57	54	45	28	24	64	65
$a = 12 \cdot ft$	4.8'	65	65	32	40	64	65	65	65	64	40	32	65	65
	6.01	65	65	35	43	65	65	65	65	65	43	35	65	65
	7.2'	65	65	32	40	64	65	65	65	64	40	32	65	65
	8.4'	65	64	24	28	45	54	57	54	45	28	24	64	65
	9.6'	65	40	15	9	16	17	17	17	16	9	15	40	65
	10.8'	25	15	13	33	52	65	65	65	52	33	13	15	25
	11.4'	7	9	23	62	65	65	65	65	65	62	23	9	7
	12.0'	0	11	36	65	65	65	65	65	65	65	36	11	0

BAR STRESS WITH 2 INTERMEDIATE BEAMS a = 5.11 ft, b = 12 ft

All cells must be white to comply with ACI.

RECOMMENDATIONS

 DO <u>NOT</u> DESIGN FOR STRUCTURAL PLAIN CONCRETE (SPC) PER ACI 318 22.2.1

 OK TO CONSIDER SPC FOR LIFTING CONDITIONS.

 DESIGN FOR CODE SPECIFIED LIVE LOAD OF 40 psf.

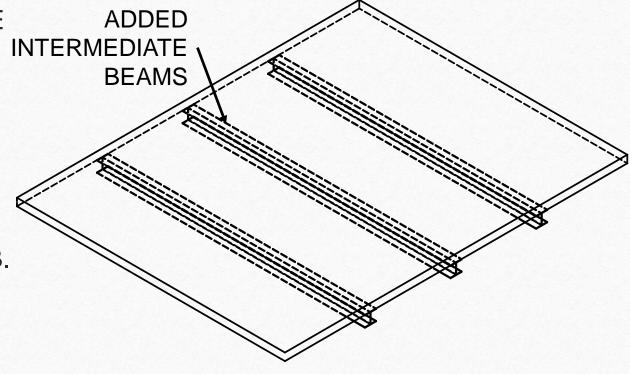
 IF SLAB WILL CRACK DURING LIFTING. ADD TEMPORARY REINFORCING ON TOP OF SLAB. BOLT BEAM TO FLOOR WITH HILTI ANCHOR BOLTS (S). TEMPORARY STEEL , BEAM ON TOP

www.clark-engineers.com jmc@clark-engineers.com 936-273-6200

RECOMMENDATIONS

INTERMEDIATE BEAMS MAY NOT SATISFY TEMPERATURE REINFORCING.

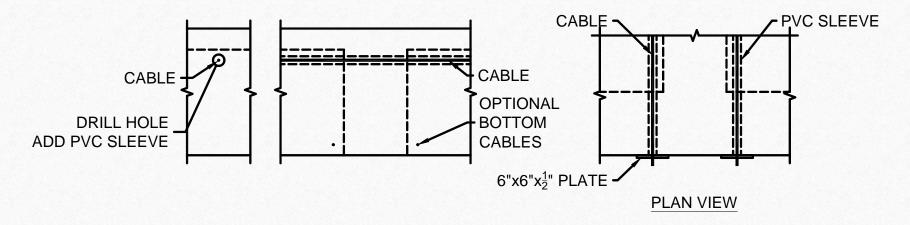
LESSONS LEARNED

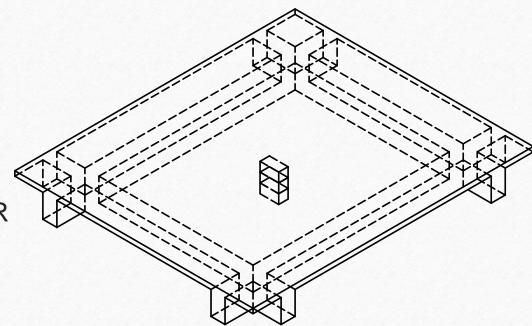

- <u>EOR</u> IS RESPONSIBLE TO PROVIDE APPROPRIATE DETAILS FOR TEMPERATURE REINFORCING.
- ULTIMATE STRENGTH DESIGN (USD)
 - MINIMUM REINFORCING FOR GIVEN SPANS <u>a</u> AND <u>b</u> CAN EASILY BE DETERMINED BY USD METHOD FOR SPECIFIED BAR DIAMETER AND SPACING IS SUPPLIED.

RECOMMENDATIONS

 FOR SLABS THAT DO NOT HAVE ADEQUATE REINFORCING TO SATISFY TOTAL LOAD, ADD INTERMEDIATE BEAMS AT APPROPRIATE SPACING.

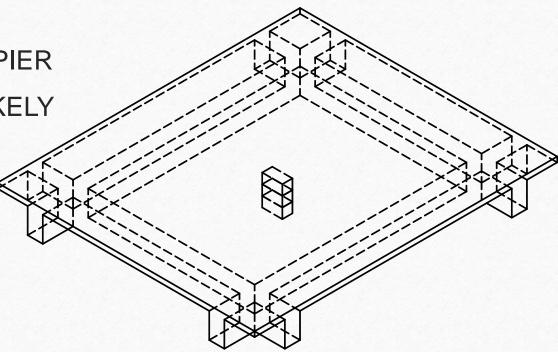
 BOLT BEAM ENDS TO GRADE BEAMS, ENSURE UNIFORM CONTACT TO BOTTOM OF SLAB.


 VERIFY TEMPERATURE REINFORCING AND DETAILS.


- POST TENSIONED
 - IT IS POSSIBLE THAT EXISTING POST TENSIONED SLABS WILL HAVE ADEQUATE REINFORCING FOR CLEAR SPANS DEPENDING ON SLAB SPANS.
 - CHECK TO SATISFY 100psi PRESTRESS AFTER LOSSES FOR TEMPERATURE.
 - CHECK TENSILE STRESS LESS THAN CRACKING STRESS.
 - ACI SPECIFIES THAT TWO-WAY SLABS SHALL HAVE 125psi EFFECTIVE PRESTRESS (ACI 318 8.6.2.1).
 - ADDED PRESTRESS CABLES MAY BE REQUIRED TO SATISFY MIN. PRESTRESS.

- PRESTRESS REINFORCING
 - IT IS POSSIBLE TO ADD PRESTRESS REINFORCING INSTEAD OF INTERMEDIATE BEAMS.
 - FEASIBILITY WILL BE BASED ON COST COMPARISON BETWEEN TWO OPTIONS.
 - CHECK TO SATISFY 125psi MIN. PRESTRESS.

- PRESTRESS REINFORCING DETAILS AND SKETCHES.
 - CHECK TENSILE STRESS LESS THAN CRACKING STRESS.
 - NEW CABLES SHOULD BE PLACED IN PVC TUBES, GROUT IF POSSIBLE.


- INTERMEDIATE PIERS ON SLABS WITHOUT BEAMS.
 - MUST USE FEA OR SIMPLIFIED METHOD TO ANALYZE (???).
 - EXISTING REINFORCING WILL IN GENERAL NOT BE SUFFICIENT FOR INTERMEDIATE PIERS.

 UNCRACKED SECTIONS WILL PROBABLY NOT CRACK WITH PIER

 PUNCHING SHEAR STRESS LIKELY WILL BE ADEQUATE

 INTERMEDIATE PIERS WILL PROBABLY WORK WITH POST TENSIONED AND ADDED PRESTRESSED OPTIONS.

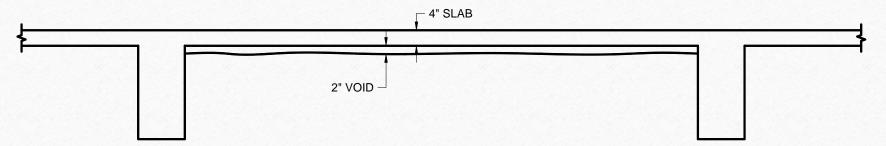
- UNCRACKED SECTION MAY BE OK FOR LIFTING.
- UNCRACKED SECTION WILL LIKELY BE CLOSE TO MAXIMUM TENSILE STRESS AT TOTAL LOAD (FOR REFERENCE ONLY).
- MOST IF NOT ALL REINFORCED CONCRETE SLABS HAVE SHRINKAGE CRACKS.
- SHRINKAGE CRACKS TYPICALLY FORM AT ≈15' TO 20' SPACING.

- IF SLAB CRACKS, TENSILE STRESS IN EXISTING REINFORCING WILL LIKELY BE AT YIELD IN TWO WAY BENDING.
- ONCE STEEL STRESS REACHES YIELD, SLAB WILL START TO DEFLECT EXCESSIVELY AND HANG SIMILARLY TO A CHAIN UNDER TOTAL LOAD
- YIELDING MAY NOT OCCUR UNDER NORMAL LIVE LOAD (≈12 psf).

- IF SLAB IS UNCRACKED, CAN SPAN ABOUT (±) 15 ft IN TWO WAY BENDING.
- IF SLAB IS CRACKED, EXISTING REINFORCING WILL GENERALLY NOT BE ADEQUATE.
- WELDED WIRE MESH (WWM) WILL GENERALLY NOT BE ADEQUATE FOR SPANS OVER ABOUT 4 ft. SHORT SPAN (WWM AT MID DEPTH).
- LOCATION AND SIZE OF REINFORCING IS GENERALLY NOT KNOWN AND SHOULD BE VERIFIED BY GROUND PENETRATING RADAR (GPR) OR OTHER APPROPRIATE METHODS, e.g. TAKE CORE SAMPLES.

- EDGE SHEAR WILL GENERALLY NOT CONTROL DESIGNS OF TWO WAY SLABS.
- POST-TENSIONED SLABS WILL MOST LIKELY BE OK FOR LIFTING FOR SPANS UP TO ABOUT 15 FT. OR SO.

- CHECK EXISTING POST TENSIONED SLAB
- DESIGN ADDED PRESTRESSED REINFORCING AS APPROPRIATE.
- DESIGN INTERMEDIATE BEAMS.
- MCAD TEMPLATES ARE AN EXCELLENT TOOL FOR FAST PRELIMINARY DESIGN AND FOR COST ESTIMATES.
- FINAL DESIGN IS RESPONSIBILITY OF <u>EOR</u>.


CAUTION: SOME FINAL THOUGHTS

- RAISED SLABS THAT ARE CHECKED USING STRUCTURAL PLAIN CONCRETE (SPC) MAY BE OPERATING CLOSE TO FAILURE.
- THIS DOES NOT COMPLY WITH ACI CODE AND MOST LIKELY DOES NOT COMPLY WITH IBC OR SPECIFIED LIVE LOAD OF 40 psf (ASCE 7-10).
- AN OWNER MAY ADD A VERY HEAVY LOAD SUCH AS A GRAND PIANO OR POOL TABLE THAT CAUSES A RAISED SLAB TO FAIL IF NOT ADEQUATELY REINFORCED.
- A RAISED SLAB THAT FAILS WHICH IS NOT DESIGNED ACCORDING TO IBC AND ACI WILL <u>CAUSE</u> <u>EOR</u> AND CONTRACTOR A SIGNIFICANT AMOUNT OF GRIEF.

CAUTION: SOME FINAL THOUGHTS

- SLABS WITH WWM WILL MOST LIKELY NOT HAVE ADEQUATE TEMPERATURE REINFORCING.
- A RAISED SLAB IS MORE SUSCEPTIBLE TO TEMPERATURE CHANGE THAN A SLAB ON GRADE.
- EXISTING REINFORCING SUCH AS #3s @ 12" EACH WAY WILL NOT BE ADEQUATE FOR TYPICAL GRADE BEAM SPACING, SO INTERMEDIATE BEAMS ARE REQUIRED.

- SOME FOUNDATION REPAIR CONTRACTORS HAVE RAISED DOZENS OF SLABS ON GRADE.
- THEY REPORT THAT OFTEN THE SLABS HAVE CONTINUOUS VOIDS BETWEEN GRADE BEAMS WITH OUT CRACKS.
- WHY DO THESE SLABS WORK?

- DESIGN LIVE LOAD IS 40 psf
- OWNER OCCUPIED LIVE LOAD ≈12 psf FROM ASCE 7-10
 TABLE C4-2, pg. 414
- LIVE LOAD = 6.0 psf CONSTANT +6.0 psf TRANSIENT

• TWO CASES ARE SHOWN BELOW FOR STRUCTURAL PLAIN CONCRETE (SPC) BENDING STRESS 40 psf LIVE LOAD AND 12 psf LIVE LOAD.

ercent o	f Tens	ile St	rengt	h of C	oncr	ete									Percent of	Tens	ile St	rengt	h of C	oncr	ete										
otal Loa	d														Total Load	1															
$q_{LL} = 40 psf$							b = 15	.33-ft							q _{LL} = 12	psf		$\mathbf{b} = 15.33 \cdot \mathbf{ft}$													
		0.0	0.8'	1.5	3.1'	4.6'	6.1'	7.7'	9.2'	10.7	12.3'	13.8	14.6'	15.3'			0.0	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15		
	0.0	0%	6%	19%	52%	78%	93%	98%	93%	78%	52%	19%	6%	0%		0.0	0%	4%	13%	36%	54%	64%	67%	64%	54%	36%	13%	4%	0		
	0.6	4%	5%	12%	33%	50%	61%	65%	61%	50%	33%	12%	5%	4%		0.6'	2%	3%	8%	22%	34%	42%	45%	42%	34%	22%	8%	3%			
	1.2"	12%	7%	7%	17%	28%	35%	37%	35%	28%	17%	7%	7%	12%		1.2'	8%	5%	5%	12%	19%	24%	25%	24%	19%	12%	5%	5%	1		
	2.4'	37%	20%	7%	5%	8%	9%	9%	9%	8%	5%	7%	20%	37%		2.4'	26%	14%	5%	3%	6%	6%	6%	6%	6%	3%	5%	14%	2		
	3.6'	60%	32%	12%	14%	22%	27%	28%	27%	22%	14%	12%	32%	60%		3.6'	42%	22%	8%	10%	15%	18%	19%	18%	15%	10%	8%	22%	4		
	4.8'	75%	41%	16%	20%	32%	39%	42%	39%	32%	20%	16%	41%	75%		4.8'	52%	28%	11%	13%	22%	27%	29%	27%	22%	13%	11%	28%	5		
= 12·ft	6.0'	80%	44%	17%	21%	35%	43%	46%	43%	35%	21%	17%	44%	80%	$a = 12 \cdot ft$	6.0'	55%	30%	12%	15%	24%	30%	32%	30%	24%	15%	12%	30%	5		
	7.2'	75%	41%	16%	20%	32%	39%	42%	39%	32%	20%	16%	41%	75%		7.2'	52%	28%	11%	13%	22%	27%	29%	27%	22%	13%	11%	28%	5		
	8.4	60%	32%	12%	14%	22%	27%	28%	27%	22%	14%	12%	32%	60%		8.4'	42%	22%	8%	10%	15%	18%	19%	18%	15%	10%	8%	22%	4		
	9.6'	37%	20%	7%	5%	8%	9%	9%	9%	8%	5%	7%	20%	37%		9.6'	26%	14%	5%	3%	6%	6%	6%	6%	6%	3%	5%	14%	2		
	10.8'	12%	7%	7%	17%	28%	35%	37%	35%	28%	17%	7%	7%	12%		10.8'	8%	5%	5%	12%	19%	24%	25%	24%	19%	12%	5%	5%			
	11.4'	4%	5%	12%	33%	50%	61%	65%	61%	50%	33%	12%	5%	4%		11.4'	2%	3%	8%	22%	34%	42%	45%	42%	34%	22%	8%	3%			
	12.0'	0%	6%	19%	52%	78%	93%	98%	93%	78%	52%	19%	6%	0%		12.0'	0%	4%	13%	36%	54%	64%	67%	64%	54%	36%	13%	4%	(

MAX STRESS IS 98% OF CRACKING AT 40 psf AND JUST 67% AT 12 psf.

ercent o	f Tens	ile St	rengt	h of C	oncr	ete									Percent of	Tens	ile St	rengt	h of C	oncr	ete									
otal Loa	d														Total Load	1														
$q_{LL} = 4$	0 psf						b = 15	5.33-ft							$q_{LL} = 12$	psf	$b = 15.33 \cdot ft$													
		0.0	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7	12.3'	13.8	14.6	15.3'			0.0'	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.	
	0.0	0%	6%	19%	52%	78%	93%	98%	93%	78%	52%	19%	6%	0%		0.0	0%	4%	13%	36%	54%	64%	67%	64%	54%	36%	13%	4%	09	
	0.6	4%	5%	12%	33%	50%	61%	65%	61%	50%	33%	12%	5%	4%		0.6'	2%	3%	8%	22%	34%	42%	45%	42%	34%	22%	8%	3%	29	
	1.2'	12%	7%	7%	17%	28%	35%	37%	35%	28%	17%	7%	7%	12%		1.2'	8%	5%	5%	12%	19%	24%	25%	24%	19%	12%	5%	5%	89	
	2.4'	37%	20%	7%	5%	8%	9%	9%	9%	8%	5%	7%	20%	37%		2.4'	26%	14%	5%	3%	6%	6%	6%	6%	6%	3%	5%	14%	26	
	3.6'	60%	32%	12%	14%	22%	27%	28%	27%	22%	14%	12%	32%	60%		3.6'	42%	22%	8%	10%	15%	18%	19%	18%	15%	10%	8%	22%	42	
	4.8'	75%	41%	16%	20%	32%	39%	42%	39%	32%	20%	16%	41%	75%		4.8'	52%	28%	11%	13%	22%	27%	29%	27%	22%	13%	11%	28%	52	
a = 12-ft	6.0'	80%	44%	17%	21%	35%	43%	46%	43%	35%	21%	17%	44%	80%	$a = 12 \cdot ft$	6.0'	55%	30%	12%	15%	24%	30%	32%	30%	24%	15%	12%	30%	55	
	7.2'	75%	41%	16%	20%	32%	39%	42%	39%	32%	20%	16%	41%	75%		7.2'	52%	28%	11%	13%	22%	27%	29%	27%	22%	13%	11%	28%	52	
	8.4	60%	32%	12%	14%	22%	27%	28%	27%	22%	14%	12%	32%	60%		8.4'	42%	22%	8%	10%	15%	18%	19%	18%	15%	10%	8%	22%	42	
	9.6'	37%	20%	7%	5%	8%	9%	9%	9%	8%	5%	7%	20%	37%		9.6'	26%	14%	5%	3%	6%	6%	6%	6%	6%	3%	5%	14%	26	
	10.8	12%	7%	7%	17%	28%	35%	37%	35%	28%	17%	7%	7%	12%		10.8	8%	5%	5%	12%	19%	24%	25%	24%	19%	12%	5%	5%	8	
	11.4'	4%	5%	12%	33%	50%	61%	65%	61%	50%	33%	12%	5%	4%		11.4'	2%	3%	8%	22%	34%	42%	45%	42%	34%	22%	8%	3%	29	
	12.0'	0%	696	19%	52%	78%	93%	98%	93%	78%	52%	19%	6%	0%		12.0'	0%	4%	13%	36%	54%	64%	67%	64%	54%	36%	13%	4%	09	

- ONCE THE CONCRETE CRACKS THE REINFORCING WILL IMMEDIATELY BE STRESSED.
- THE STRESSES ARE SHOWN BELOW FOR WWM, WITH REINFORCEMENT AT MID DEPTH OF SLAB FOR 40 psf AND 12 psf.

IN BOTH CASES THE WWM YIELDS WHEN CRACKING OCCURS.

															Total Load (12p	sf LL)														
Total Load															Stress in ksi		b = 15.33-ft													
Stress in ksi	b = 15.33 - ft												A STATE OF STATE OF STATE OF		0.0	0.8	1.5	3.1'	4.6	6.1	7.7'	9.2'	10.7	12.3	13.8	14.6	15.3'			
		0.0'	0.8'	1.5'	3.1'	4.6'	6.1'	7.7'	9.2'	10.7'	12.3'	13.8'	14.6'	15.3'		0.0	0	8	25	65	65	65	65	65	65	65	25	8	0	
	0.0'	0	11	36	65	65	65	65	65	65	65	36	11	0		0.6	5	6	16	42	65	65	65	65	65	42	16	6	5	
	0.6'	7	9	23	62	65	65	65	65	65	62	23	9	7		1.2'	17	10	0	22	26	AE	48	45	36	22	9	10	17	
	1.2'	25	15	13	33	52	65	65	65	52	33	13	15	25			1,074.01		**	-	30	40		022	100	120	1100000		2000	
	2.4'	65	40	15	9	16	17	17	17	16	9	15	40	65		2.4	52	27	10	6	11	12	12	12	11	6	10	27	52	
	3.6'	65	64	24	28	45	54	57	54	45	28	24	64	65		3.6'	65	44	17	19	31	37	39	37	31	19	17	44	65	
$a = 12 \cdot ft$	4.8'	65	65	32	40	64	65	65	65	64	40	32	65	65	a = 12-ft	4.8'	65	56	22	27	44	54	58	54	44	27	22	56	65	
	6.0'	65	65	35	43	65	65	65	65	65	43	35	65	65		6.0'	65	61	24	30	48	60	64	60	48	30	24	61	65	
	7.2'	65	65	32	40	64	65	65	65	64	40	32	65	65		7.2	65	56	22	27	44	54	58	54	44	27	22	56	65	
	8.4'	65	64	24	28	45	54	57	54	45	28	24	64	65		8.4	65	44	17	19	31	37	39	37	31	19	17	44	65	
	9.6'	65	40	15	0	16	17	17	17	16	9	15	40	65		9.6'	52	27	10	6	11	12	12	12	11	6	10	27	52	
					33	- 10										10.8	17	10	9	22	36	45	48	45	36	22	9	10	17	
	10.8'	25	15	13		52	65	65	65	52	33	13	15	25		11.4	5	6	16	42	65	65	65	65	65	42	16	6	5	
	11.4'	7	9	23	62	65	65	65	65	65	62	23	9	7			_	2		1883	1.000						1977	0		
	12.0'	0	11	36	65	65	65	65	65	65	65	36	11	0		12.0'	0	8	25	65	65	65	65	65	65	65	25	8	U	

- CALCULATIONS ARE BASED ON:
 - 1. 4 INCH THICK (VARIES FOR SLABS ON GRADE).
 - 2. STEEL REINFORCING IS NOT DEVELOPED IN AN UNCRACKED SECTION.
 - 3. CONCRETE HAS 3000 psi COMPRESSIVE STRENGTH (VARIES). e.g. OLDER SLABS MAY BE 2500 psi.
 - 4. THESE EXACT DIMENSIONS (a=12 ft, b=15.33ft), FOR DIFFERENT SLAB DIMENSIONS, STRESSES WILL BE DIFFERENT.

- THERE IS NOT ENOUGH LIVE LOAD TO CAUSE CRACKING AT 12 PSF, EVEN WITH LARGER CLEAR SPANS.
- THIS IS WHY THERE ARE NO OBSERVED PROBLEMS IN THE DOZENS OF SLABS THAT HAVE BEEN LIFTED.
- WITH FULL LIVE LOAD AS SPECIFIED BY CODE, PREDICTED STRESSES ARE VERY CLOSE TO FAILURE FOR 12'x15.33' RECTANGULAR SLAB.
- A GARAGE WITH 20 TO 30 psf FOR CARS IS STILL WELL WITHIN THE ALLOWABLE CRACKING LIMIT.
- ONCE A SLAB CRACKS, THE STEEL REINFORCING IS ACTIVATED AND WILL QUICKLY REACH YIELD STRESS.

- FOR AN UNDER-REINFORCED SLAB (WWM) RAISED SLAB DOES NOT HAVE ADEQUATE FACTOR OF SAFETY AND IS CONSIDERED TO BE A <u>LIFE</u> <u>SAFETY ISSUE</u>.
- SPC IS NOT PERMITTED FOR ELEVATED SLABS PER ACI 318-14 22.2.1
- SLABS WITH WELDED WIRE MESH (WWM) WILL FAIL ALMOST IMMEDIATELY ONCE THE SLAB CRACKS.
- SLABS WITH REBAR (e.g. #3s @ 12") WILL TAKE LONGER TO FAIL.
- SLABS WITH WWM WILL NOT HAVE SUFFICIENT TEMPERATURE REINFORCING AS REQUIRED BY CODE.

- A PHILOSOPHICAL QUESTION TO CONSIDER IS: WHAT ARE HOME OWNERS REASONABLY EXPECTING FOR COMPLETED REPAIRS?
 - a) IT WORKS AND THIS ALL I CARE ABOUT; OR
 - b) I EXPECT THIS REPAIR TO COMPLY WITH THE GOVERNING BUILDING CODE WITH APPROPRIATE FACTOR OF SAFETY.
- ENGINEERS MUST DESIGN TO THE CODE SPECIFIED LOAD OF 40 psf REGARDLESS OF WHAT A LOWER OR NORMALLY EXPECTED LOAD THAT IS ACTUALLY PLACED ON A STRUCTURE.

- IF A NEW OWNER PLACES A HEAVY PIANO, A POOL TABLE OR HEAVILY LOADED BOOK CASES ON THE ELEVATED SLAB AS SOME PRACTICAL EXAMPLES, THIS TYPE OF LOAD COULD BE ENOUGH TO CAUSE THE SLAB TO CRACK.
- ELEVATED FOUNDATION SLABS MUST BE DESIGNED FOR 40 PSF LIVE LOAD PER METHODS SPECIFIED IN ASCE 7-10, ACI 318 AND IBC 12 (OR SEE LATEST HOUSTON BUILDING CODE).
- THIS INCLUDES SUFFICIENT REINFORCING FOR BOTH GRAVITY STRUCTURAL LOADS AND TEMPERATURE LOADS.

CONCLUSIONS

- FOR SLABS WITH WWM REINFORCING, BEST STRUCTURAL OPTION TO SATISFY IBC AND ACI 318 MAY BE TO ADD PRESTRESSING.
- FOR SLABS WITH #3s AT e.g. 12 INCH SPACING FOR TEMPERATURE, BEST OPTION APPEARS TO BE ADDING INTERMEDIATE BEAMS OR ADDING PRESTRESSING.
- FOR POST TENSIONED SLABS BEST OPTION APPEARS TO BE ADDING ADDITIONAL PRESTRESSING TO SATISFY IBC AND ACI.
- IT APPEARS THAT ADDING INTERMEDIATE BEAMS IS A BETTER SCHEME THAN ADDING INTERMEDIATE PIERS AND ITS MUCH EASIER TO ANALYZE.

MATHCAD DESIGN TOOL FOR ELEVATED CONCRETE SLABS BY CLARK ENGINEERS

- EXCELLENT FOR PRELIMINARY DESIGN FOR COST ESTIMATES.
- MAKES DESIGN CHECKS FAST AND EASY.
- EASILY CHECK EXISTING REINFORCING.
- EASILY SIZE INTERMEDIATE BEAMS.
- EASILY DESIGN ADDED PRESTRESSING.
- MCAD SHEET IS NOT A SUBSTITUTE FOR SOUND ENGINEERING JUDGEMENT.
- THE <u>EOR</u> IS RESPONSIBLE FOR THE FINAL DESIGN.

MCAD DESIGN TOOL BY CLARK ENGINEERS

- CONTACT CLARK ENGINEERS FOR QUICK PRELIMINARY DESIGN CHECKS AND TO HELP IN COSTING.
- CONTACT CLARK ENGINEERS FOR PRICING ON MCAD TEMPLATES.

OTHER DESIGN TOOLS AVAILABLE

MathCAD Sheets written By Engineers For Engineers

http://structuralanalysismcad.com/info@structuralanalysismcad.com

Design Tools

- Structural Analysis and Design
 - •2D Matrix Structural Analysis
 - Bulkhead / Laterally Loaded Pier Design
 - •Reinforced Concrete Beam
 - Reinforced Concrete Column
 - Steel Base Plate Design w/ multiple rows
 - Anchor Bolt Design

- Beam on Elastic Foundation
- Wind Load on a Pole / Stack / Sign
- PTI Foundation Design (Post Tension)
- •FRP Tanks and Equipment
 - Chem Tank Design
 - Horizontal Chem Tank Design
 - Elevated Tanks
 - •FRP Stack and Base Design
 - •RTP-1 Laminate Property Calculator
 - Custom Design and Costing Sheets

CLARK ENGINEERS, INC.

www.clark-engineers.com jmc@clark-engineers.com 936-273-6200