

Industrial Concrete Paver Presentation

Objectives

Overview Industrial and Port Paver Applications (Impervious and Permeable)

Design Methodology

Current Construction Best Practices

Project Case Studies

www.keystonehardscapes.com

Manufacturing

Paver Specification Data

ASTM C 936

Compressive Strength

8000 psi

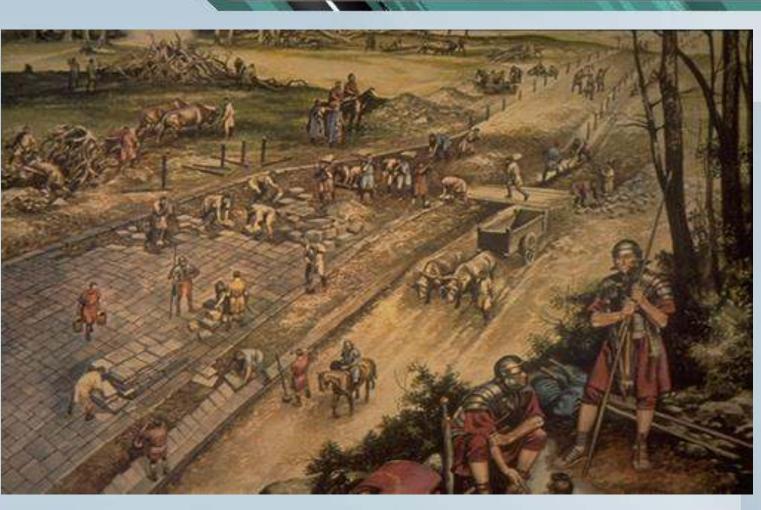
Absorption

Freeze Thaw

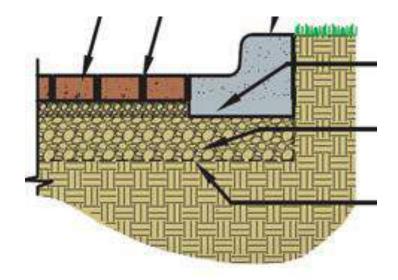
< 5%

ASTM C 1645

Segmental Paving Product Group

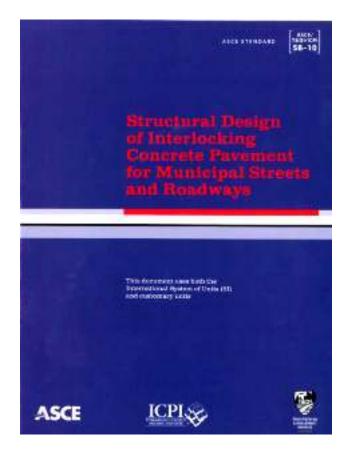


Articulating Concrete Blocks



Roman Road Construction

Industrial Paver System Design


- **Structural Base Courses**
- **Bedding Materials**
- **Jointing Sands**

- Paving Unit Thickness, Shape & Pattern
- Permanent Edge Restraint

ASCE Paver Design Method

ASCE Standard - ASCE / T&DI / ICPI 58-16 Structural Design of Interlocking Concrete Pavement Municipal Streets and Roadways, 2016

Function of a Structural Number

Formal pavement design relies on engineering calculations based on established design equations, such as the empirical equations found in the 1993 AASHTO *Guide for Design of Pavement Structures*. A critical element of the flexible pavement equation is the Structural Number, which represents the overall structural requirement needed to sustain the traffic loads anticipated in the design. The required Structural Number depends on a combination of existing soil support, total traffic loads, pavement serviceability, and environmental conditions.

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

AASHTO design equation for flexible pavements. The Structural Number is indicated as SN.

Geotechnical Report

Pavement Design Recommendations

No pavement loading design guidance has been provided to GTS, Inc. by the design team. Therefore, the pavement sections provided in this report are based on an assumed Equivalent Single Axle Loading (ESAL) of about 43,000 for light-duty pavement sections (car and passenger truck), about 200,000 for medium-duty pavement sections (drive lanes for passenger cars and light trucks and fire lanes), and about 500,000 for heavy-duty pavement sections (light semi-truck traffic and dumpster areas). A factor of 1.5 was used to convert flexible ESALs to rigid pavement ESALs. These values should be evaluated by the design team for appropriateness for this project site and intended pavement use.

A design modulus of subgrade reaction (k) of 125 pounds per square inch, per inch, was used for the design of the rigid pavements. A design California Bearing Ratio (CBR) of 5 was used for the design of flexible pavements. The pavement sections assume adequate drainage will be provided to allow removal of water from the pavement structure in 24 hours or less.

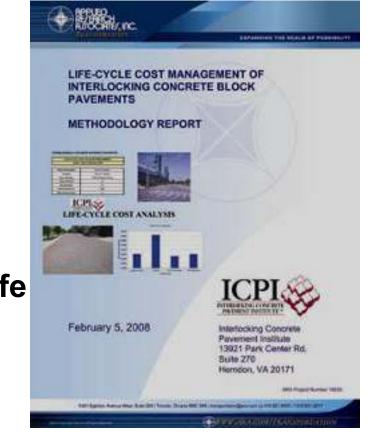
The flexible and rigid pavement sections shown in Tables 5 and 6 on the following page are recommended.

Geotechnical Report

C.R. Crawford Construction Planned Emma Apartments – Phase II SEC of East Emma Avenue and Park Street, Springdale, Arkansas GTS Project No. 19-1-5-132 Page 26 of 30

Table 5: Flexible Pavement Section Recommendations

Flexible Pavement Section:	Asphalt Surface Course	Base Course (Class 7)	Design Traffic
Light-Duty	2"	8"	car and passenger truck
Medium-Duty	3"	9*	drive lanes for passenger cars and light trucks and fire lanes
Specification'	Section 407-1 PG 64-22 75 Gyrations	Section 303	


¹ Standard Specification for Highway Construction, Arkansas State Highway and Transportation Department, Edition of 2014.

- LCCA Methodology Report
- **Supported By LCC Software**
- **Data From 83 Site Surveys**
- **Pavers Have ~31 Year Initial Design Life**

Pavement Condition vs. Age

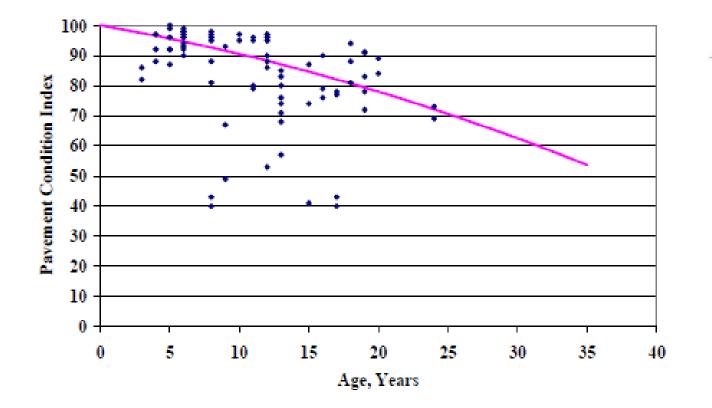
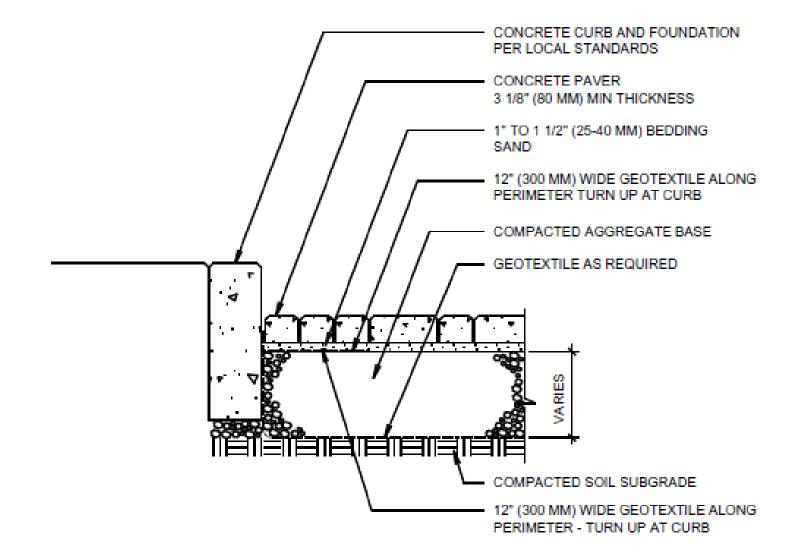
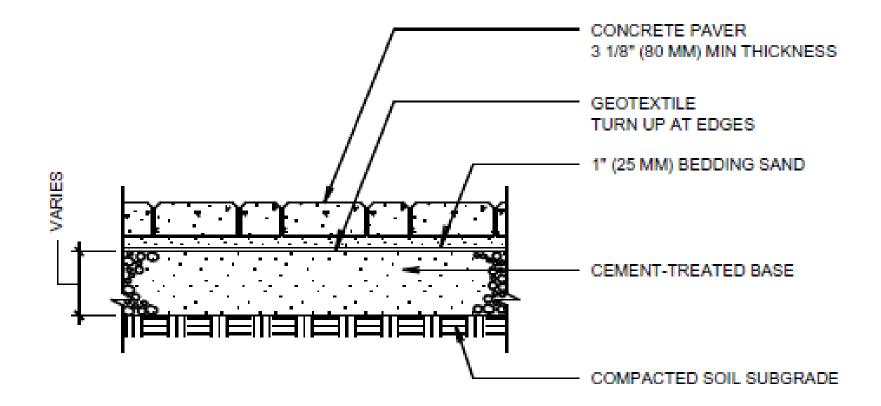




Figure 15. Pavement Condition Index versus Age.

Industrial Pavers – Aggregate Base Detail

Pavers – Cement Bound Agg. Base Detail

Subgrade Preparation

Compacted InSitu Cement / Lime Treated Stabilized Reinforced

DGA Base Installation

Structural Base Placed / Compacted To Specifications

Base Finished Profile = Paver Thickness + 1" Bedding Sand From Finished Elevation

Bedding & Jointing Sands Materials

Gradation - ASTM C 33 – 0-1% Passing #200 Hardness – Silica Mineralogy Preferred Particle Shape – Sub Rounded to Sub Angular or Cubicle Durability Testing – ASTM D 7428

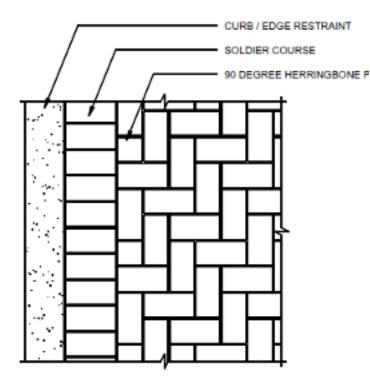
Resistance of Fine Aggregate to Degradation in the Micro-Deval Apparatus

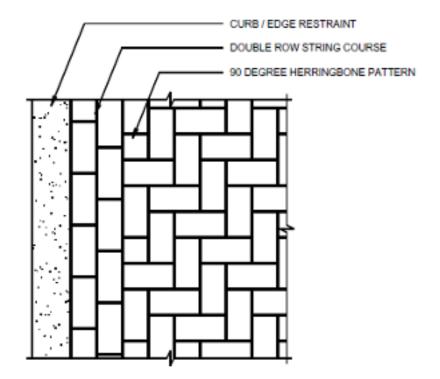
Screeding Bedding Sand

Power Screed Machine

Asphalt Paving Machine

Paver Installation


Hand Installation


Mechanical Installation

Edging Treatment Detail

Vibrating Sand into Joints

First Pass To Seat Pavers In Bedding Sand

Second Pass To Fill Joints

Final Broom Sweep

No Cure Time Required

Surface Proof Rolling

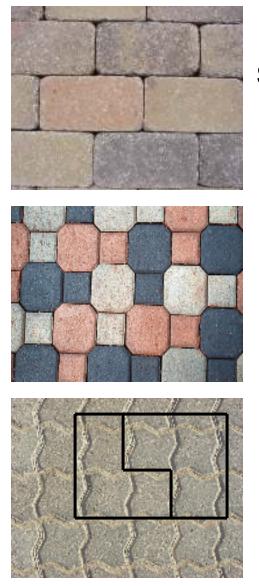
10 Ton Rubber Wheel / Tire Roller Static Mode Accelerates Paver Interlock

Paver Thickness

60mm 2 ^{3/8}" 80mm 3 ^{1/8}" 80-120mm 3^{1/8}"- 4^{13/16}"

Light Duty

Medium Duty

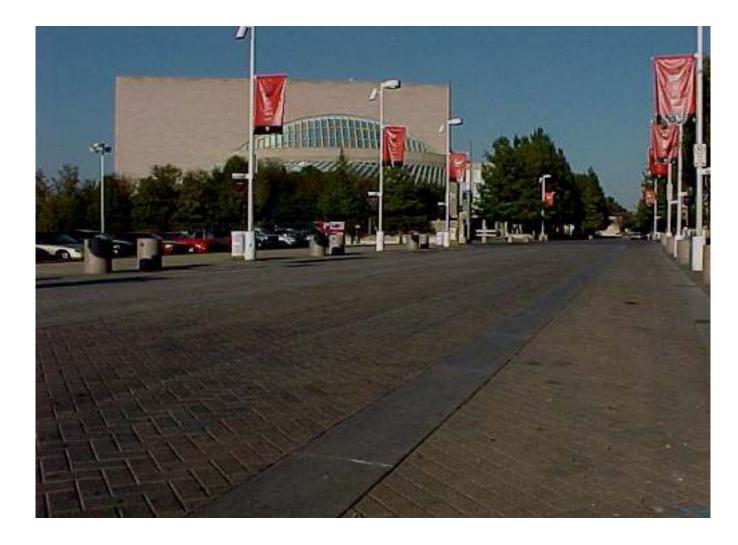

Heavy Duty

Paver Shapes

Category B

Category C

Shapes with No Interlocking Geometry


Shapes with Interlocking Indentation Geometry

Shapes with Interlocking Geometry In Two Axes


Flora Street - Dallas, TX

40,000 sf 1989

80mm Paver 6" CIP Concrete

City Streetscape – Osseo, MN

45,000 sf 2010

80mm Paver ³/₄" Bitumen Set CIP Concrete

Port of Tampa - Tampa, Florida

Berth 208 Yard

495,000 sf

1995

80mm Paver 18" Limestone Base Geogrid Reinforced Base 12" Sand Subgrade

Hong Kong International Airport

80mm Paver Geotextile/Asphaltic Tack Coat 7" Cement Treated Base 18" Crushed Aggregate Base 10" Crushed Aggregate Base

5,000,000 sf 1998

Howland Hook Marine Terminal Staten Island, NY

660,000 sf Standard 1988

13,000 sf Permeable 2000

80mm Paver 8" Asphaltic Concrete Base 18" Aggregate Base 6" Reinforced Subgrade

Port of Oakland – Oakland, CA

100mm Paver 9" Asphalt Base Engineered Fill @ 50% CBR

Dock Replacement Dutch Harbor, Unalaska, AK

Pier IX Massey Coal Terminal-Newport News, Virginia

660,000 sf

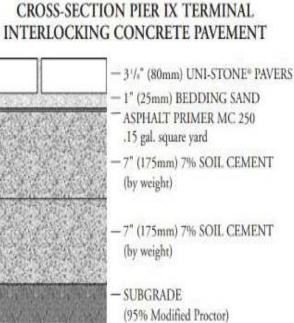
1983

80mm Paver Asphalt Primer Coat 7" Soil Cement @ 7% Base 7" Soil Cement @ 5%

Pier IX Massey Coal Terminal-Newport News, Virginia

	TYPE OF PAVEMENT								
FACTORS CONSIDERED	1	2	3	4	5	6	7	8	9
Prevent Contamination	Excel	Excel	Excel	Excel*	Excel	Fair	Poor	Poor	Poor
Allows Cleanup of Coal	Excel	Excel	V. Good	Excel*	Excel	Fair	Poor	Poor	Poor
Ability to Adjust to Differential Settlement	Excel	Excel	Fair	Poor	Fair	Good	Good	Good	Good
Ability to Carry Heavy Wheel Loads	Excel	V. Good	Good	Excel	Good	Good	Good	Fair	Fair
Resistance to Tracks & Dozers	V. Good	Good	Poor	Good	Poor	Good	Good	Good	Good
Resistance to Breaking Up & Coal Contamination	Excel	V. Good	Good	Fair	Fair	Good	Poor	Poor	Poor
Impermeability	Excel	Excel	Good	Excel*	Excel	Poor	Poor	Poor	Poor
Ease of Repair	Excel	Excel	Fair	Poor	Good	Excel	Excel	Excel	Excel
Resistance to Acid Water	V. Good	V. Good	Good	Good	Good	Good	Good	Good	Good
Surface Drainage & Runoff	Excel	V. Good	Excel	Excel	Excel	Fair	Poor	Poor	Poor
Weather Durability	Excel	Excel	V. Good	V. Good	V. Good	Fair	Fair	Fair	Fair
Expected Life (years)	20-25	15-20	10-15	20-25*	10-15	10-15	10-15	10-15	10-15

CUMMARY ANAVOR OF DAVEMENT APTERNATIVES


"If significant differential settlement does not occur. If it does, rating is poor.

PAVEMENT TYPES

- 1. Interlocking Concrete Block Pavers over Soil Cement
- 2. Interlocking Concrete Block Pavers over Crushed Stone
- 3. Soil Cement Only

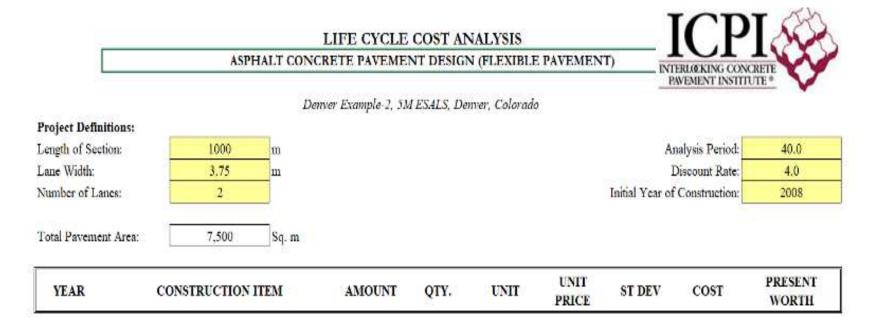
- 4. Reinforced Concrete 5. Bituminous Concrete over Crushed Stone
- 6. Crushed Limestone

7. Crusher Run Stone 8. Middling Coal 9. Marketable Coal

Mammoet Materials – Roshea, TX

80mm Paver 18" Aggregate 6" Sand Layer

150,000 sf 2009


Port Fourchon – Fourchon, LA

2,000,000 sf 2008-2012

80mm Paver 18-24" Pre-existing Yard Crushed Aggregate Base

Design Tools LCCA

INITIAL CONSTRUCTION

0	Asphalt Concrete Surface	50	918.75	Tonne	\$95.00	\$8.00	\$87,281	\$87,281
0	Asphalt Concrete Base	125	2062.5	Tonne	\$85.00	\$7.00	\$175,313	\$175,313
0	Granular Base	150	2475	Tonne	\$13.00	\$2.00	\$32,175	\$32,175
0	Granualr Subbase	525	8662.5	Tonne	\$8.50	\$1.00	\$73,631	\$73,631

Design Tools Structural

~		•	U	-	1	0	
Desigr	n Information			-			
					Design Assistant		
)esign Life ((years)	20					
Initial Serviceability		4.2			ESALs	5,000,000	
Terminal Serviceability		2.5			Subgrade Classification	GM, SM	
Reliability		75%			Subgrade Conditions	Fair	
R		-0.674					
Standard Deviation		0.45			Base Type	Unbound Dense Graded Base	
		Layer Coefficient	Thickness (in)				
Pavers and B	8edding	0.44	4.125		Recommended Design		
	Unbound Dense Graded Base	0.14	6				
	Asphalt Treated Base	0.28	4		Pavers and Bedding	4.12	25
	Cement Treated Base	0.20	4		Unbound Dense Graded Base	#NAME?	
Base Asphalt Concrete Base		0.42	2		Unbound Dense Graded Subbase	#NAME?	
Unbound Dr	ense Graded Subbase	0.09					
Fraffic Estim	iates						
AADT	Functional Category	Percent Commercial	#Lanes	Estimated ESALs	Total ESALs		
500	Local	0.5%	2	719	14,387		
1000	Local	1%	2	2825	56,498		
5000	Local	1%	2	13516	270,313		
10000	Minor Arterial/Collector	3%	2	79521	1,590,414		
15000	Major Arterial/Collector	5%	2	196501	3,930,025		
20000	Principal Arterial	5%	2	259825	5,196,505		
40000	Principal Arterial	5%	2	509163	10,183,257		

System Components

- Concrete Pavers Permeable Joint Material

> Open-graded Bedding Course

Open-graded Base Reservoir

> — Open-graded Subbase Reservoir

> > Underdrain (as required)

Optional Geotextile Under Subbase

Uncompacted Subgrade Soil

Aggregate Gradations

Sub-Base No. 2, 3, or 4 Base No. 57 Bedding/Joints No. 8, 9 or 89

Pavers w/ permeable joints

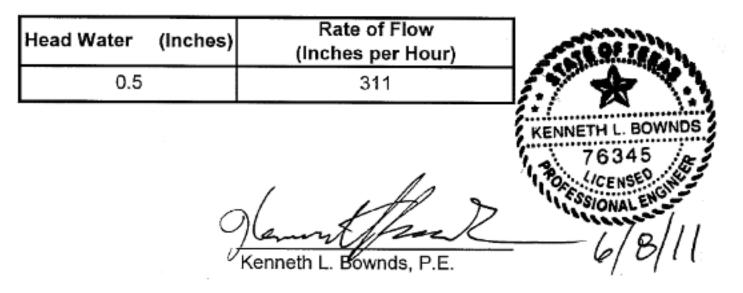
No. 8 bedding material

126 MA

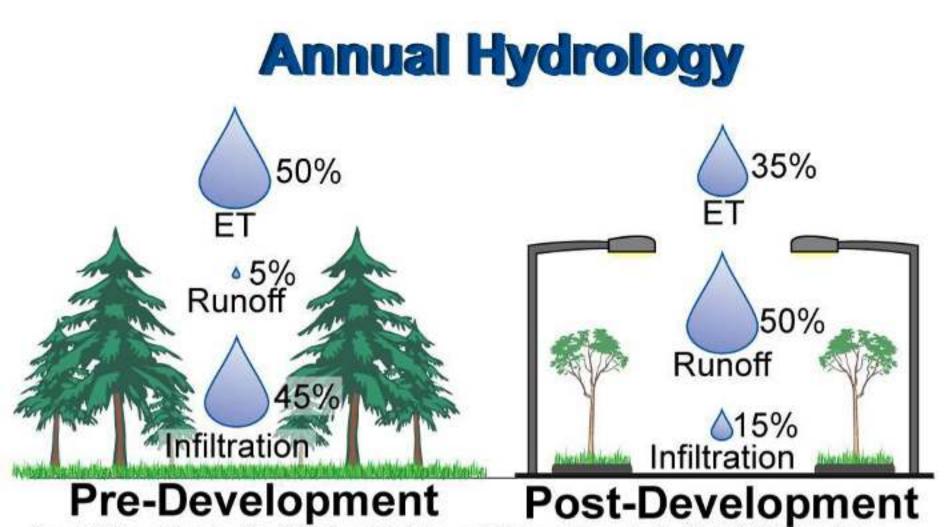
No. 57 stone base for water storage

No. 2 stone subbase for water storage

Uncompacted soil subgrade over optional geotextile


6

Paver Types: Interlocking Shapes / Patterns



Test Results

Testing was conducted maintaining a 0.5" head of water above the top surface of the pavers. The level of head water was established, maintained for approximately 30 seconds, and the rate of flow was determined. This procedure was performed a total of five times. The average flow rate was determined and is reported below.

LIMITATIONS: The test results presented herein were prepared based upon the specific samples provided for testing. We assume no responsibility for variation in quality (composition, appearance, performance, etc.) or any other feature of similar subject matter provided by persons or conditions over which we have no control. Our letters and reports are for the exclusive use of the clients to whom they are addressed and shall not be reproduced except in full without the written approval of Construction Testing Sciences, LLC.

Swank, W.T., and Crossley, D.A. 1988. Forest Hydrology and Ecology at Coweeta. New York, NY: Springer-Verlag.

The Low Impact Development Center, Inc.

Treatment Train Site Design

- 1. Source controls = Infiltrate
- 2. Conveyance controls = Filter & detain
- 3. End of Pipe Controls = Retain in ponds, streams or storm sewer

Stormwater Management Objectives

....Varies with locality...

Water Quantity

Retain/infiltrate runoff volumes & peak flows Imitate pre-development conditions Control amount of impervious cover Stormwater utility fees

Water Quality

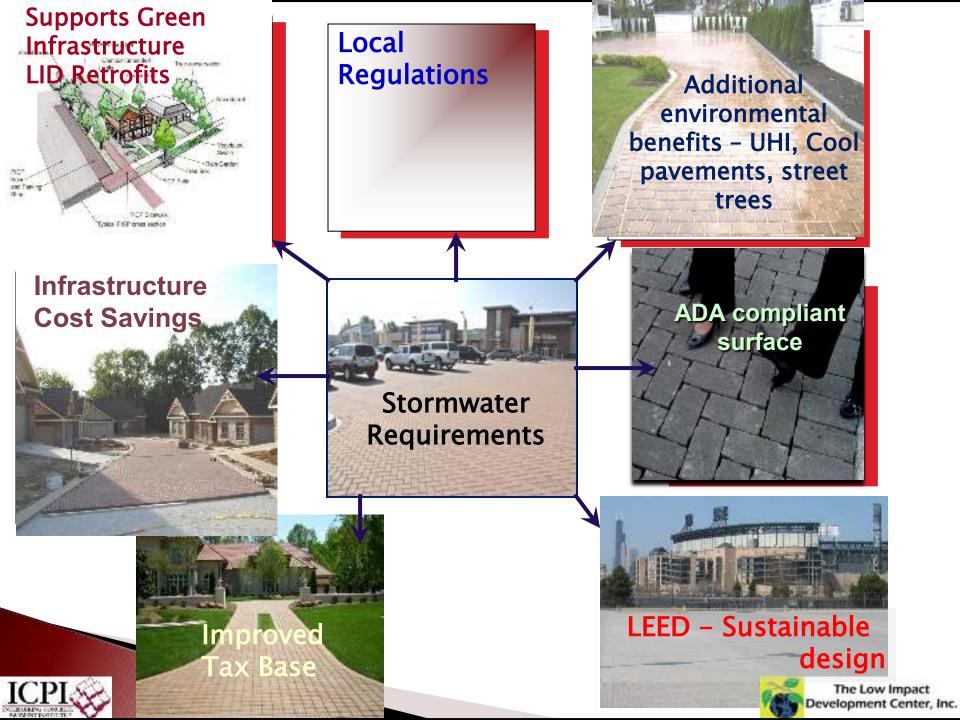
Capture percentage of storms Control specific nutrients, metals

PICP addresses all objectives

How PICP Manages Stormwater

Water Quantity

- Reduces volumes & peak flows via infiltration
- Imitates predevelopment conditions: no runoff from common storms
- Reduces or eliminates retention/detention facilities & conserves land
- Reduces stormwater utility fees


Water Quality

- Reduced downstream erosion, preserves drainage system
- Filters & reduces nutrients, metals
- Recharges groundwater
- Helps maintain dry-weather stream flows
- Filters oil drippings

Reduces runoff temperatures

Design Solutions

PICP detains runoff under parking for peak flow reduction, oil treatment

Burnaby, BC

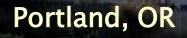
Residential subdivision Storm sewers eliminated – infrastructure cost savings

Savannah, GA

PICP handicapped parking over stormwater detention system

Burnaby, BC

Beach Community Goals:


Reduce erosion & salt water incursion, protect water quality

Green Infrastructure

Chicago, IL & Portland, OR

- Reduced combined sewer overflows
- Less expensive than separating storm & sanitary sewers
- Supports tree growth
- Improves neighborhood character

Images courtesy of Chicago DOT

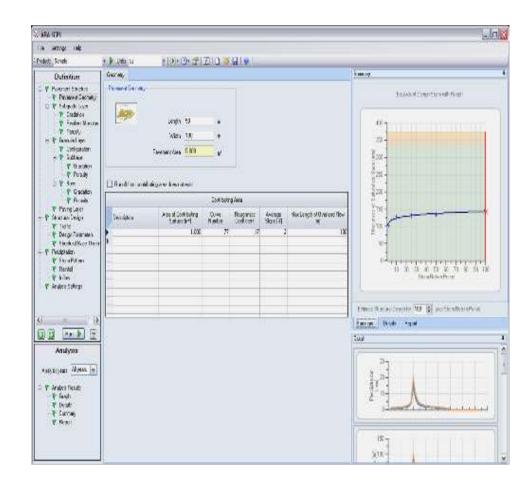
PICP Sizing Steps

Inputs:

- 3 1/8 in. thick pavers over 2 in. thick bedding material
- Project location (no-frost or frost region)
- Design storm (in. depth)
- PICP area (sf)
- Contributing area (sf) if applicable
- Contributing area runoff depth (in.) if applicable
- Depth to seasonal high water table (ft.)

PICP Sizing Steps

Inputs – continued:


- Soil type (classification)
- Soil infiltration rate (in./hr)
- Soil strength (California Bearing Ratio or R-value)
- Base porosity
- Drainage time typically 24 48 hrs
- Traffic (18 kip or 80 kN equivalent single axle loads)
- Traffic design life = 20 years

PICP Design

- Permeable Design Pro
- Software integrates:
 - Hydrologic Design
 - Structural Design
- Contact ICPI to obtain software www.icpi.org

Test Site Range 109 - Ft. Carson, CO

5000 sf 2011

80mm Paver

14" Crushed Stone

Port Manchac, LA

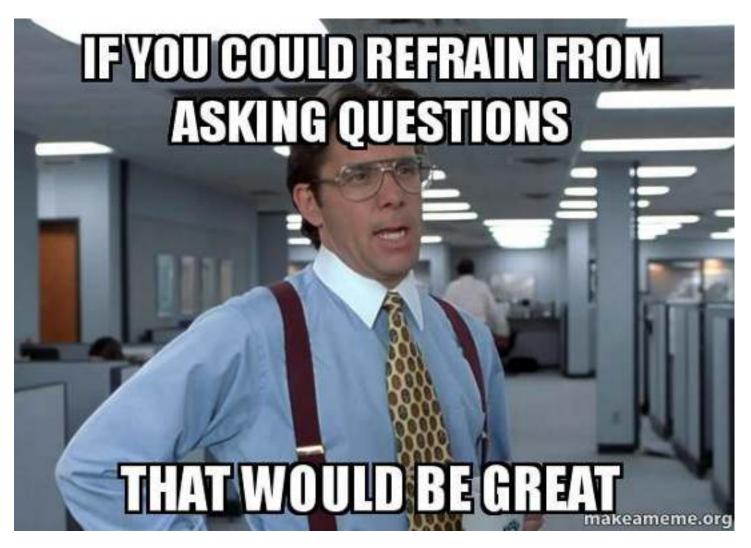
Structural Concrete Pavers Advantages

Installation Time Equal / Quicker Than CIP

High Surface Durability / Abrasion Resistance

Serviceability in Differential Settlement Areas

Enhanced LCCA


Technical Support

- **Resource for Specifications / Details**
- Facilitate Preliminary Design / Cost Estimation
- Access To Local ICPI Certified Installers
- **Provide Inspector Training**
- **Provide Maintenance Guidelines**

Thank You!

