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1. Background: Field and Laboratory Seismic
(Stress Wave) Measurements

1. Soil Profile 2. Field: Linear 3. Lab: Linear and
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1a. Field: Seismic Measurements

Objective: measure time, t, for a given stress
wave to propagate a given
distance, d ... then velocity = d/t

Source Point1 Point2

—_— ] —
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Key characteristics: 1. small-strain (linear)
measurements
2. proper sources
3. oriented receivers



Field Measurements with
Compression (P) and Shear (S) Waves

Wave|Particle | Distortion] Wave | Small-Strain
Type | Motion Velocity| Modulus




Small-Strain Seismic Measurements
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Field Seismic Methods

1. Crosshole 2. Downhole
(Seismic CPT)

3. P-S Suspension 4. Surface Waves

Logger




Overview of SASW : Generalized
Field Arrangement and Sampling

Vertical NE===

Seismic
Source

Receiver #1

Dynamic Signal
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* SASW = Spectral Analysis of Surface Waves



Multiple Source-Receiver Positions

Test Source
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Liquidator Working as a Seismic
Source on Top of Yucca Mountain




Phase Velocity (fps)

Composite Field Dispersion Curve
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Best-Match Theoretical Dispersion Curve
(Final Step in Forward Modeling)

Phase Velocity (ft/sec)
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1b. Laboratory: Combined Resonant Column
and Torsmnal Shear (RCTS) Test
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Laboratory Parametric Studies
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Small-Strain V,and V, Measurements:
Piezoelectric Transducers

P Wave
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2. Examples: Applications and
Case Histories

 static loading conditions

« dynamic loading conditions



Static Loading Conditions

2.1 Site Characterization

* layering, ground water table, etc.
- underground structures
- tunnel investigations

- dams, levees, etc.

- SMW landfills

2.2 Process Monitoring

- grouting evaluations

- ground improvement studies
- areas of deterioration
 sample disturbance

2.3 Movements under Static Loads

- footing settlements
- retaining wall movements



General Approach

Estimate Material Quality Evaluate Changed Condition

Field Improved
Good Zone

Material
Before



2.1a Site Characterization:
Tunnel Investigation

Concrete
Liner

Rock =




SASW Testing Arrangement and
Planes of Investigation
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Conducting SASW Tests




Interpreted Vg Profile Behind
Tunnel Wall at Springline
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2.1b Site Characterization: Proposed
Locatlons of Water Tunnel Shafts
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l<- Tunnel |
Allgnment

o AT e T

Vancouve
r Harbor




SASW Testing Locations

Vancouve
r Harbor
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V. Profiles in Area 1: Relative Character

and Variability of Granular Materials?
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V. Profiles in Area 2: Relative Character
and Variability of Granular Materials?
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Liquefaction Resistance from Vg
(Andrus and Stokoe, 2000)
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Depth (ft)

Likelihood of Liquefaction Triggering

Effective Stress Normalized Shear Wave Velocity, V¢, (fps)
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2.1c Dam Investigation: “Quality” of
Alluvium Within and Beneath an
Embankment Dam




Approximate SASW Testing Locations

Reservoir
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SASW Test Locations - Downstream Face
and Downstream Area

Note: All Testing Arrays Parallel to Crest

Downstream Face

N\
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Downstream \
Area




Dillon Dam Site




Gradation Curves from Field Samples
of Foundation Alluvium
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Statistical Analysis of Natural Alluvium
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Comparison of Mean Vg Profiles - Natural
Alluvium and Compacted Alluvium
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Results:

1. Natural alluvium is stiff
(Vg = 300 m/s); hence,
dense.

2. Compacted alluvium in
dam is similar to natural
alluvium so:

(a) dense and
(b) not cemented.

3. No loose zone of alluvium
under toe of dam.

4. Average c.o.v.<0.1



Best-Fit Curve for the Field Log Vg — Log G,/
Relationship of the Natural Alluvium
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Liquefaction Resistance from Vg
(Andrus and Stokoe, 2000)
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2.2a Process Monitoring: Evaluating
Compaction of a Thick Granular Fill

Existing NPP
#~ Units 1 &2
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Cross-Section of Backfill at Units 3 and 4

Backfill SASW Testing
Stages:

Nuclear
¢ Island

800 ft (244m)

Notes: 1. Material in backfill is SP, SP-SM, SM ; nonplastic fines.
2. Loose lifts of 12 in. (30 cm).

3. Minimum compaction of 95% modified Proctor (avg. ~ 98%).



Creating 90-ft (27.5-m) Deep Excavation

*"‘- 2% S ata; A

Plant Vogtle Units 3and 4 Dec. 10 2009 © 2010 The Southern Company



Relative Locations of Units 3 and 4

o i P S T S—
Plant Vogtle Units 3 and 4 foundation excavation, © 2010 The Southern Company
with water vapor rising from cooling towers in background. April, 2010.



Backfilling Nearly Complete

Aerial photograph of Vogtle 3 and 4 construction site. Unit 3 is located at left and top of photo and

Unit 4 to the right and bottom. Heavy lift derrick crane foundation in center. August 11, 2011 © 2011 Southem Company, Inc. All fights reserved.




SASW Testing on Completed Backfill

Bulldozer
Source
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Elevation (ft)

Seismic Testing during Backfilling Process
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Depth (ft)

Do the Field and Lab V_ Values Agree?
(Could V. Profile be Predicted from Lab?)
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2.3a Predicting Movements Under Static Loads:
Shallow Foundations on Granular Soil

Main Design Criteria

l o |

1. Bearing Capacity: Qe ;,n=Q,/F-S-

2. Permissible Settlement: S < Sy,

Qdesign

Sdeﬁgn """"""""" :
Zo NN
"y ¥
Settlement, S
Approach Traditional Approach
* Limit equilibrium analysis * Based on SPT and CPT correlations
* Requires strength parameters * Soil sampling is hard and/or expensive
(¢'andc")

in granular soil so rarely performed
Stresses and strains are undefined

New Framework

e Deformation-based analysis
e Stresses and strains are calculated

—> Load (Q)



New Framework for Predicting Settlements

Framework:
* Requires Stiffness Parameters 3. Stress - and Strain - Dependent Moduli, Load #1:
* G Changingwithyand o 400
* v Changing with y (but presently | At Point A: Load #1
assumed v = constant) 300~
1. Loading Applied

1 Applied Load, P

2. Load - Settlement Curve

Settlement, S (mm)

200

Shear Strain, y (%)
4. Stress - and Strain - Dependent Moduli, Load #2:

400 I"At Point A: Load #1

Applied Load, P (kN) ©
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Modeling with Dynamically Measured Soil Properties*

Step # 1 - Field Seismic Testing for V- Step #2 - Field log G,,,,, — log
Depth Profile A Relationship
)
Soil Profile 0 0 > Log G,
(or Log V)
#1 \ Develop /
- —_— —_— _— —_— —_— _— * . .
Depth °

Relationship

>

log ¢’

Step # 3 - Dynamic Laboratory Tests for Step # 4 - Combine Field Seismic and Dynamic

|
|
o T I L
G/G,,, — log y Relationships I Laboratory Tests for G — log v Relationships

| increasing ¢’

increasing ¢’ |
1.0 — | G
G/Gmax *
Combine
For each layer For each layer
0
0 | T 1

' 103 10! 10! 10°

I I I
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PLAXIS Finite Element Model with MoDaMP

Yoll
Profile

* 946, 15-node triangular
elements

e 15 ft x 15 ft dimensions

* Footings are modeled as flexible

e Axisymmetric model

* The lower boundary is fixed in
both direction

* The vertical boundaries are
fixed only in horizontal direction

15 ft

|<

15 ft



Load-Settlement Tests at the NGES Test Site

T-Rex Reaction
Load Cell

<«— Hydraulic Jack

Backfill

Reference
Frames

* Two, circular, reinforced concrete footings with diameters of 0.91 m
(3.0 ft) and 0.46 m (1.5 ft).

* Loading with T-Rex as a reaction; Settlements measured with linear

potentiometers (Thank you Prof. Briaud!)



Example of How MoDaMP Works
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Load-Settlement Predictions with MoDaMP

Comparison of Predicted and
Measured Settlements

Applied Pressure (kPa)
100 200 300

|
Measured |

& \L;
B TF~ o

L

C

Load Levels at Which
Vertical-Strain Profiles

were Calculated Estimated

Working —»
Prediction with Stress
PLAXIS and Range
MoDaMP2
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Load-Settlement Predictions with MoDaMP

Comparison of Predicted and Predicted Vertical Strains Beneath
the Centerline of Footing

Measured Settlements

Applied Pressure (kPa) Vertical Strai
100 200 300 ertical Strain (&)
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Points A, B and C are selected load levels
on the load-settlement curve of the 0.91-m

_ diameter footing
Diameter=0.91 m




Load-Settlement Predictions with MoDaMVIP

Comparison of Predicted Settlements with CPT- and SPT-based Methods

Applied Pressure (kPa)
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2. Examples: Applications and
Case Histories

 static loading conditions

« dynamic loading conditions



2. Examples (Cont’d): Dynamic
Loading Conditions

—> 2.4 Machine-Foundation Design
2.5 Vibration-lsolation Barriers

2.6 Earthquake Engineering

site response, soil-structure
interaction, liquefaction, etc.



2.4 Dynamically Loaded Machine Foundations

Actual System Equivalent System

Soil: G = shear modulus
Y, = total unit weight Kz = 4Gro/(1-v)

v = Poisson’s ratio C,=(34rdo72 /1—vVv)

(ro is based on equal areas)
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Evaluating the Dynamic Response of
the Machine Foundation System

Q=Q,sinmt

Z=27,sinwt
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Dynamic Maghnification Factor, Z,/ Z static

500 1000 2000 5000 10,000

Frequency, cpm

From Richart, Hall and Woods, 1970



3. Link Between Field and Lab:
Estimating the Field G - log y Relationship (Soil)

2000 ;
_ La Cienega
/Fleld Depth =185 m
1500 =% — — — = = = — _ _ Silty Sand (SM)
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Shear Estimated S
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Shearing Strain, y, %



Link Between Field and Lab:
Estimating the Field G — log y Relationship (Rock)

600 Yucca Mt.
Depth = 1000 ft
500 (— Topopah Spring Tuff
Tptpmn
400 |— Lab Curve
Shear . .
Modulus, 300 AN
N\
G, 1000 ksf Field
200 [— 4
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Concluding Remarks

1. Small-strain mechanical properties, expressed
by Vg or G, ., , play an important role in
Geotechnical Engineering.

2. Small-strain mechanical properties are critical
in dynamic and static deformational analyses
under working loads.

3. Field measurements of Vg form the way to
map nonlinear laboratory measurements to
field behavior.

4. The importance of Vg or G ., (and also V;
and M__. ) will continue to grow in solving

dynamic and static problems.



Thank you



