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Outline 
1. Brief Background

•  emphasize small-strain field 
measurements

•  laboratory tests used for 
parametric studies

2. Present a Number of Examples
•  static and dynamic problems

3. Show the Link Between Field and 
Laboratory Seismic Measurements

4. Concluding Remarks



1. Background: Field and Laboratory Seismic 
(Stress Wave) Measurements 

1. Soil Profile 3. Lab: Linear and 
Nonlinear G and D 
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2. Field: Linear  
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1a. Field: Seismic Measurements 
  
Objective:  measure time, t, for a given stress 

wave to propagate a given
distance, d ... then velocity = d/t

 d  

Key characteristics:  1. small-strain (linear) 
      measurements
  2. proper sources
  3. oriented receivers 



Field Measurements with 
Compression (P) and Shear (S) Waves 
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Small-Strain Seismic Measurements 
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1.  Crosshole 2.  Downhole 
 (Seismic CPT) 

*
3. P-S Suspension  

 Logger 
4. Surface Waves 

Field Seismic Methods 

*
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Overview of SASW*: Generalized 
Field Arrangement and Sampling

* SASW = Spectral Analysis of Surface Waves  
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Multiple Source-Receiver Positions 
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Liquidator Working as a Seismic 
Source on Top  of Yucca Mountain 

f ≥ 1 Hz 



Composite Field Dispersion Curve  
Generated from All Receiver Spacings 
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Best-Match Theoretical Dispersion Curve   
(Final Step in Forward Modeling) 
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1b. Laboratory: Combined Resonant Column  
and Torsional Shear (RCTS) Test 
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Laboratory Parametric Studies 
a. Log Vs – log σo b. G – log γ



Small-Strain Vp and Vs  Measurements: 
Piezoelectric Transducers 
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2.  Examples:  Applications and 
Case Histories

•  static loading conditions

•  dynamic loading conditions



Static Loading Conditions 
2.1  Site Characterization
   • layering, ground water table, etc.
   • underground structures
   • tunnel investigations 
   • dams, levees, etc.
  • SMW landfills

2.2  Process Monitoring
   • grouting evaluations
   • ground improvement studies
   • areas of deterioration

 • sample disturbance

2.3  Movements under Static Loads
   • footing settlements
  • retaining wall movements

*

*

*

*



General Approach 
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2.1a Site Characterization: 
Tunnel Investigation  
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Conducting SASW Tests 

Small Hammer
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2.1b Site Characterization: Proposed  
Locations of Water Tunnel Shafts  
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SASW Testing Locations 
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Vs Template 

VS	=	AS	(σo’/Pa)
ns	

•  AS	=	VS	at	
σo’=	1	atm	

•  Ko	assumed	
equal	to	0.5	

SoD	Soils	
(Imperial	
Valley)	



Vs Profiles in Area 1: Relative Character 
and Variability of Granular Materials? 
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Shear Wave Velocity (fps)
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Vs Profiles in Area 2: Relative Character 
and Variability of Granular Materials? 
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Liquefaction Resistance from VS
(Andrus and Stokoe, 2000)
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Likelihood of Liquefaction Triggering 
Effective Stress Normalized Shear Wave Velocity, VS1 (fps)
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2.1c Dam Investigation: “Quality” of 
Alluvium Within and Beneath an 

Embankment Dam 
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Approximate SASW Testing Locations 
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SASW Test Locations - Downstream Face  
and Downstream Area 

Downstream  
Area 

Toe  
Road 

Fence 

Downstream Face 

Bedrock 

75 ft 
25 ft 

Downstream Shell;  
Compacted  

Alluvium 

Natural  
Alluvium 

SASW Profiling  
Location and Depth 

Note: All Testing Arrays Parallel to Crest 



Dillon Dam Site 

Seismic Source 

Drill Rig 



Gradation Curves from Field Samples 
of Foundation Alluvium 

Dillon	Dam	
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Comparison of Mean VS Profiles - Natural 
Alluvium and Compacted Alluvium 
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Best-Fit Curve for the Field Log VS – Log σn’  
Relationship of the Natural Alluvium 

Results: 
1.  ns = 0.32 is reasonable for 

uncemented gravelly soils. 
2.  VS at depth ~ 1 ft (0.3 m) 

equals 527 fps (161 m/s) 
which represents material 
with:  

 (a) large D50 ( > 25 mm),  
 (b) large Cu ( > 35) and  
 (c) no cementation. 

3.  Log Vs – Log σ’v is 
representive of a normally 
consolidated soil (… with no 
plasticity). 
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Calculated VS1 Profile for Natural 
Alluvium Using ns = 0.32 
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Liquefaction Resistance from VS
(Andrus and Stokoe, 2000)
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2.2a Process Monitoring: Evaluating 
Compaction of a Thick Granular Fill 

New	Units	3	and	4	
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Creating 90-ft (27.5-m) Deep Excavation 
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Backfilling Nearly Complete 
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SASW Testing on Completed Backfill 
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2.3a Predicting Movements Under Static Loads:  
Shallow Foundations on Granular Soil 

Main	Design	Criteria	

1.	Bearing	Capacity:	Qdesign=Qult/F.S.	 2.	Permissible	Seklement:	S ≤ Sdesign 

•  Limit	equilibrium	analysis	
•  Requires	strength	parameters		
						(	ϕ' and	c')	

•  Based	on	SPT	and	CPT	correlaMons	
•  Soil	sampling	is	hard	and/or	expensive		
												in	granular	soil	so	rarely	performed	
•  Stresses	and	strains	are	undefined	

TradiMonal	Approach	

New	Framework	

S 

Load	(Q)	

Seklement,	S	

Sdesign	

Qdesign	

•  DeformaMon-based	analysis	
•  Stresses	and	strains	are	calculated	

Approach	



New Framework for Predicting Settlements 

•  Requires	SMffness	Parameters		
•  G	Changing	with	γ	and	σ 
•  ν	Changing	with	γ	(but	presently		
							assumed	ν	=	constant)	
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Modeling	with	Dynamically	Measured	Soil	ProperMes*	
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RelaMonship	

G	

0	

log	γ	

increasing	σʹ0	
				

For	each	layer	
				

10-1	10-3	 10-0	10-1	

Combine	

Soil	Profile		

#	1	

#	2	

*	MoDaMP 



PLAXIS	Finite	Element	Model	with	MoDaMP	

•  946,	15-node	triangular	
elements	

•  15	=	x	15	=	dimensions	
•  Foo:ngs	are	modeled	as	flexible	
•  Axisymmetric	model	
•  The	lower	boundary	is		fixed	in	
both	direc:on	

•  The	ver:cal	boundaries	are	
fixed	only	in	horizontal	direc:on	

#	1	

#	2	

15	D	

15	D	

Soil		
Profile		 A	 A	

B	 B	B	 B	



Load-Seklement	Tests	at	the	NGES	Test	Site	

•  Two,	circular,	reinforced	concrete	fooMngs	with	diameters	of	0.91	m	
(3.0	D)	and		0.46	m	(1.5	D).	

•  Loading	with		T-Rex	as	a	reacMon;	Seklements	measured	with	linear	
potenMometers	

T-Rex	ReacMon		

Backfill	

0.91	m	

0.30	m	

Reference	
Frames	

Hydraulic	Jack	
Load	Cell	

Loading	Frame	

0.15	m	

(Thank	you	Prof.	Briaud!)	



Example	of	How	MoDaMP	Works	
Vertical	
Loading

Layer	11.82	m

2.75	m

Diameter=B=0.91	m

Point	X

Layer	2

0.5B
1.0B 1.5B

Point	Y
Point	Z

Rigid	boundary



Load-Seklement	PredicMons	with	MoDaMP	
Comparison	of	Predicted	and		

Measured	Seklements	



Load-Seklement	PredicMons	with	MoDaMP	
Comparison	of	Predicted	and		

Measured	Seklements	
Predicted	VerMcal	Strains	Beneath		

the	Centerline	of	FooMng	



Load-Seklement	PredicMons	with	MoDaMP	
Comparison	of	Predicted	Seklements	with	CPT-	and	SPT-based	Methods	



2.  Examples:  Applications and 
Case Histories

•  static loading conditions

•  dynamic loading conditions



2.4   Machine-Foundation Design
2.5   Vibration-Isolation Barriers
2.6  Earthquake Engineering
         site response, soil-structure 
         interaction, liquefaction, etc.

2. Examples (Cont’d): Dynamic 
Loading  Conditions 



Equivalent	System	Actual	System	

2.4 Dynamically Loaded Machine Foundations 

Soil:	G	=	shear	modulus	
        γt	=	total	unit	weight	
        ν	=	Poisson’s	ra:o	
	(rO	is	based	on	equal	areas)	

KZ	=		4GrO/(1	-	ν)	
	

CZ	=	(​3.4 ​r↓o↑2 /1 − ν )√⁠ρG 	

rO	

KZ		 CZ		



Q	=	QO	sin	ω t	

0	 0.5	 1.0	 1.5	 2.0	 2.5	
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D	=	0.10	
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Frequency,	cpm	

From	Richart,	Hall	and	Woods,	1970			

Dy
na

m
ic
	M

ag
ni
fic
aM

on
	F
ac
to
r,	
Z 0

	/	
Z	
st
aM

c	
	

Z	=	Z0	sin	ω t	

D	=	0.25	

Evaluating the Dynamic Response of 
the Machine Foundation System 



Field

Lab Curve

100 10-1 10-5 10-4 10-3 10-2 

Shearing Strain, γ, %  

2000 

1500 

500 

0 

Shear  
Modulus,  

G, ksf 1000 

Estimated 
Field Curve

Estimating the Field G – log γ Relationship (Soil) 

EQ

3. Link Between Field and Lab: 

  
G γ, field  =  (G/Gmax ) γ  x Gmax, field 

La Cienega 
Depth = 185 m
Silty Sand (SM)
σʹO = 25 atm



10-5 10 0 10 -1 10 -4 10 -3 10 -2 

Shearing Strain, γ, % 

0 

Lab Curve

500 

400 

100 

Shear 
Modulus, 

G, 1000 ksf
300 

200 

Yucca Mt.
Depth    1000 ft~ = 
Topopah Spring Tuff
Tptpmn

600 

Field 

Estimated Field Curve 

Estimating the Field G – log γ Relationship (Rock) 

Link Between Field and Lab: 



Concluding Remarks 
1.  Small-strain mechanical properties, expressed 

by VS  or Gmax , play an important role in 
Geotechnical Engineering.

2.  Small-strain mechanical properties are critical 
in dynamic and static deformational analyses 
under working loads.

3.  Field measurements of VS  form the way to 
map nonlinear laboratory measurements to 
field behavior.

4.  The importance of  VS  or Gmax ( and also  VP 
and Mmax ) will continue to grow in solving 
dynamic and static problems.



Thank you 


